
Example-based Spatial Search at Scale

Hanyuan Zhang∗¶‖, Siqiang Luo† , Jieming Shi‡, Jing Nathan Yan§, Weiwei Sun∗¶‖
∗School of Computer Science, Fudan University,¶Shanghai Key Laboratory of Data Science

‖ Shanghai Institute of Intelligent Electronics & Systems
†Nanyang Technological University, ‡The Hong Kong Polytechnic University, §Cornell University

{zhanghy20,wwsun}@fudan.edu.cn, siqiang.luo@ntu.edu.sg, jieming.shi@polyu.edu.hk, jy858@cornell.edu

Abstract—Searching spatial objects is a fundamental task in
spatial services such as online maps. Traditional search methods
are based on filtering conditions, burdening users to specify their
requirements. This paper focuses on spatial search via examples.
Particularly, the user can specify an example, which is a set of
objects of interest, and the purpose is to find a list of results,
each containing a set of objects with similar properties to the
given example. We conducted a user study, showing that a search
interface based on examples can effectively complement existing
approaches. However, the existing example-based search is not
scalable, hindering its applications to larger datasets. To address
this challenge, we propose two new algorithms, namely HSP and
LORA, to efficiently answer example-based spatial queries. HSP
is an algorithm based on a hierarchical partitioning of the search
space, and it achieves up to 20 times faster than the state-of-the-
art algorithm. LORA further improves the efficiency, running
up to 5000 times faster than the state-of-the-art algorithm. We
present a systematic evaluation to demonstrate the efficacy of
our algorithms.
Index Terms—Spatial Query; Data Mining

I. INTRODUCTION

Large-scale spatial services are widely adopted in real life.

Examples include trip planning [1]–[3], POI (Point of Interest)

recommendations [4], [5] and geo-social analytics [6], [7]. One

prevalent operation in spatial services is to extract several

objects with desired attributes and relative spatial locations.

We illustrate this with several daily life examples.

Example 1. Peter is a manager working in the financial

district of a city. He is searching for an apartment and a

daycare center for his three-year-old daughter. The daycare

centers are typically located in another functional district of

the city, as shown in Figure 1. Peter needs to send his daughter

to the daycare center early in the morning and go to work right

after. He usually gets some food on the way. In addition, he

needs to pick up his daughter in the afternoon and then return

to work.

Example 2. Ben is a student in Hong Kong. In his daily

routine, he goes to the gym by subway from his apartment

to take some exercise, and then leaves the gym and goes to

school. He usually buys some food on the way. However, with

the pressure of increasing rent, Ben plans to move to another

apartment that fits his daily routine with the limited budget.

The above examples show the sophisticated specifications of

the search intention. In the first example, Peter is searching for

an apartment and a daycare center, such that (1) the daycare

†Siqiang Luo is the corresponding author.

Daycare

Apartment

Financial
District

Subway

Food

Workplace

Fig. 1: Illustrating Example 1.

center is in-between the apartment and his workplace to fit

his routines; (2) there is a takeaway on the way from the

daycare center to his workplace, and (3) the daycare center

is close to his workplace for his convenience to pick up his

daughter in the afternoon. Similarly, in the second example,

Ben is searching for an apartment and a gym such that (1)

the gym is in-between his apartment and school; (2) there is a

takeaway from the gym to his school, and (3) the apartment’s

rental should be within his budget.

To assist a user in expressing her search intention, existing

approaches require her to specify detailed requirements as

filtering conditions [8], or specially optimize an objective

function for a solution [9], [10]. While these methods are

feasible to address the search problem, the sophistication of

specifying requirements burdens users in the interaction with

the interfaces. Such concerns were raised and discussed in a

seminal work [11], where a user study is conducted, showing

the superiority of using example-based queries in terms of

user-friendliness. Specifically, they show that a significant

portion of users alternatively prefers using examples to deliver
their search interest, compared with filtering conditions.

Figure 2 shows a map service incorporated with the

example-based query. The user can input a set of objects as

a desired example to the system, e.g., by clicking objects

in the map service in the “example selection” panel. The

system captures the implicit user intention and searches for

desired objects similar to the example. In Figure 2, the user

wants to find a set of objects (Apartment, Daycare, Food) with

specific relative co-locations (shown as black dotted lines in

the “example selection”) and corresponding attributes (e.g.,

reviews) as shown in the “attribute panel”. After the user spec-

ifies the example, the desired attribute values associated with

the example are extracted. The example-based system then

returns candidate objects that constitute similar co-location and

attributes, as shown in the right panel.

539

2022 IEEE 38th International Conference on Data Engineering (ICDE)

2375-026X/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDE53745.2022.00045

20
22

 IE
EE

 3
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
78

-1
-6

65
4-

08
83

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
53

74
5.

20
22

.0
00

45

Authorized licensed use limited to: Cornell University Library. Downloaded on December 01,2023 at 03:27:50 UTC from IEEE Xplore. Restrictions apply.

Attribute Panel

Apartment

Food

Daycare
Map Visualization

Apartment

Food
Daycare

Result of Example Query in DatabaseExample Selection

Apartment

Food

Daycare

User selects
an example
as a query

Example
Query

Query result

Fig. 2: An example of Spatial Exemplar Query problem.

There are three prominent advantages of the example-based

search. The first advantage is that an example set of objects

concisely carries information about the relative locations of

the objects and desired attributes. This gives the potential

power for the system to “guess” the search intention via the

example, shifting the burden from the user to the system.

Another advantage is that the example is usually available in

hand from the user’s experience. In Example 2, it is desired

to create an example that includes Ben’s current apartment,

school, as well as his frequently visited gym and food shop,

because Ben’s future remains the same as the current one.

Furthermore, compared with the hard constraints required

by filtering conditions that may rule out all candidates, the

example-based search guarantees to return the results that are

the most similar to the example.

It is important to note that we do not argue to completely
replace traditional approaches with example-based methods.

Instead, our main purpose is to outline and emphasize the po-

tential novelty of the example-based search in spatial queries,

which complements existing work and, arguably, opens up a

new research direction for spatial search. For this purpose, we

conducted a volunteer-based survey on college students using

Examples 1 and 2, and asked for their preferred interfaces. The

result shows that the example-based interface is more preferred

in those scenarios like Examples 1 and 2, but one method

cannot completely replace the other, as both interfaces have

been preferred by different users. We also observe that some

users may prefer the traditional filtering-based approaches.

However, even among these users, we observe that 83.6% of

them consider using example-based search as a complemen-

tary approach. We quote the following representative reasons

collected from the survey for choosing the example-based

interface.

“The location of the gym, university, potential apartment,
and the subway can be seen clearly on the map for me to
make the decision based on the example-based search. One
just needs to do some click on the screen.”
“It is more convenient to compare the different candidates

among the map with everything I care about visible”
The user study concludes that providing a spatial service

with an example-based search interface, in addition to the

traditional interface, can enhance its user-friendliness. We refer

interested readers to Section IV-C for more details.

Challenges. The pilot study in [11] formulates the example-
based search as SEQ (Spatial Exemplar Query). Given an

integer k, SEQ takes an example set of user-interested objects,

and searches for the k most relevant results to the given

example, where a result is an object set with the same size as

the example. The results are ranked based on their similarities

to the given example, considering both the relative co-locations

(called spatial similarity) and properties of the objects (called

attribute similarity).

Unfortunately, the computation of SEQ is prohibitive for

large datasets, because in the worst case it requires an ex-

haustive search among all possible combinations of objects.

In particular, the method presented in [11] spends more

than 24 hours answering a query for a dataset containing

500, 000 objects. However, a real-world location-based service
often needs to handle up to 107 objects. The high latency

hinders the application of SEQ to real-world location-based

services. Furthermore, the spatial similarity defined in SEQ

relies heavily on the similarities based on the shape formed

by the objects, and thus SEQ may return a set of objects which

form a similar shape with the example, but their absolute

distances can be drastically different. As a result, SEQ cannot

guarantee to rule out those unsatisfactory candidate object

pairs with dramatically larger object distances than that of the

example.

Our Contributions. To address these issues, we make the

following contributions.

• (Problem) We reformulate the example-based search by

adding a constraint that any output object set is allowed at most

a constant factor β of the distance amplification compared

with the given example, where the amplification is defined

based on the coordinates of the objects (see Section II). We

call this problem CSEQ (Constraint SEQ). CSEQ is often

more geared to practical needs, and it allows more room for

improving the efficiency of the example-based search. We

further discuss variants of CSEQ, taking into account the

practical requirements.

• (Algorithm) We present an approximate algorithm, LORA,
to answer CSEQ. LORA improves the computation efficiency

by up to 5000 times compared with the state of the art,

while retaining high accuracy. This allows the example-based

search to be applied in practice. For example, in a dataset with

500, 000 objects, the state of the art takes more than 24 hours
to compute, whereas LORA only spends around 16 seconds,
with an MAE error as low as 0.002 (that indicates negligible
difference to the exact results).

• (Theory) Given any constant ε > 0, LORA can be tuned

to have an approximation ratio 1 + ε and an additive error

α · ε, where α is a constant in (0, 1). Furthermore, from our

empirical analysis, we found that the result quality of LORA

(i.e., the closeness of the returned results to the exact results)

can be even higher than that indicated by the theoretical

analysis. We also analyze the complexity of LORA, which

demonstrates the superb efficiency of LORA.

• (Evaluation) We conducted comprehensive experiments on
real datasets and an additional user study. Our results show that

LORA can achieve significant performance improvement upon

baselines spanning a wide spectrum of parameter settings. The

540

Authorized licensed use limited to: Cornell University Library. Downloaded on December 01,2023 at 03:27:50 UTC from IEEE Xplore. Restrictions apply.

user study signals that example-based search is in general

helpful from the perspective of user experience.

II. PROBLEM DEFINITIONS

A. Data Model

Following previous studies [12]–[16], we model an object

as a point located in the Euclidean space, and we will use

the terms object and point interchangeably. Each object has

an associated category such as “restaurants”, “apartment”

and “supermarket”, which describes the object’s nature. In

addition, each object p has a list of attribute-value pairs

{(a1, u1), . . . , (ah, uh)}. For example, an object representing
a hotel has attributes such as “rating”, “daily cost” and

“capacity”. For an object p with attributes Ap = {a1, . . . , ah},
its Attribute Vector is denoted by Up = {u1, . . . , uh}, where
ui is the value of attribute ai. A tuple is a set of objects. We
use m to denote the tuple size. The distance vector of a tuple

t = {p1, p2, ..., pm} is defined as Vt = {d(p1, p2), d(p1, p3),
. . . , d(p1, pm), d(p2, p3), . . . , d(p2, pm), . . . , d(pm−1, pm)},
where d(x, y) denotes a distance metric between two objects x
and y. By default, we use the Euclidean distance, yet applying
other metrics such as traveling distances is possible.

B. SEQ and CSEQ

SEQ (Spatial Exemplar Query) and CSEQ (Constraint SEQ)

are built upon similarities between tuples. We are looking to

compare two size-m tuples t1 and t2 which are in the same
category, which means that the i-th (1 ≤ i ≤ m) items of

t1 and t2 are in the same category. The spatial similarity of
t1 and t2 is computed by the Cosine similarity (denoted as

cos(·, ·)) of their corresponding distance vectors:
SIMs(t1, t2) = cos(Vt1 , Vt2) (1)

If two points p1, p2 are of the same category, we measure
their attribute similarity by

SIMa(p1, p2) = cos(Up1 , Up2) (2)

For tuples t1 and t2, their attribute similarity is

SIMa(t1, t2) =
1

m

m∑
i=1

SIMa(t1[i], t2[i]) (3)

where t1[i] (resp. t2[i]) denotes the i-th object in tuple t1 (resp.
t2). Given a tuning parameter α ∈ [0, 1], we combine SIMa
and SIMs to define the Tuple Similarity:

SIM(t1, t2) = α · SIMs(t1, t2) + (1− α) · SIMa(t1, t2) (4)

Given an integer k and example t∗, the SEQ problem

in [11] aims to discover top-k similar tuples to t∗. While this

definition is natural, we observe that it ignores the absolute

object distances which can be important in applications. For

example, users may be favorable to objects that construct

similar shapes with the example, conditioned on that the

distances between objects are reasonably bounded. To mitigate

this problem, we revise the original SEQ problem by adding a

norm constraint. Particularly, given a constant β ≥ 1, we say
two tuples t1 and t2 satisfy the β-norm constraint, if and only

if 1
β ≤ ||Vt1 ||

||Vt2 || ≤ β, where Vt1 and Vt2 are the distance vectors

TABLE I: Frequently used notations.

Notation Description
p A point of interest with attributes
m The number of points in the example
t A tuple of points
t∗ A given example tuple
Vt The distance vector of t
||Vt|| The norm of distance vector of t
β The norm constraint
S A subspace divided from the entire space
Sc / Sa A core/auxiliary subspace
Su The union of Sc and Sa, called an ac-subspace
g A cell divided from S
Ga

j A list of points of category a in cell gj
ξ A sampling parameter in LORA

of t1 and t2, and || · || denotes the 2-norm measure. We define

a norm-constrained SEQ, dubbed as CSEQ, as follows.

Definition 1 (CSEQ): Given an integer k > 0, a constant
β ≥ 1, and a size-m example tuple t∗. The β-Constraint
Spatial Exemplar Query (CSEQ) returns top-k similar size-

m tuples t1, · · · , tk to t∗ with respect to the tuple similarity,
such that: 1) ti (i ∈ [1, k]) has the same category as t∗; 2) ti
and t∗ satisfy the β-norm constraint.

Remarks on Problem Variations. CSEQ can be adapted

to various applications or user needs. First, setting β to

infinity converts CSEQ to SEQ. Hence, any algorithm that

can answer CSEQ can also answer SEQ. CSEQ can also be

easily extended to handle applications where certain points in

the result tuples have to be fixed. For example, in Example

1 in Section I, the workplace is a fixed location that must

also appear in the result. We name this problem as CSEQ-FP

(CSEQ with fixed points). From the computation perspective,

CSEQ-FP virtually reduces the enumeration cost, making

computation easier. Therefore, for ease of presentation, we will

mainly illustrate how to design algorithms for CSEQ, which

is the general form of SEQ and CSEQ-FP. In experiments,

nevertheless, we evaluate the effectiveness of the algorithms

for all of SEQ, CSEQ, and CSEQ-FP. Moreover, it is also

possible to extend a CSEQ algorithm to cover scenarios where

some distance pairs are not interested to be considered because

those pairs can be simply skipped in the computation.

C. State of the Art in Brief

We refer to the state-of-the-art algorithm in [11] as DFS-

Prune Given an example tuple t∗ = {p∗1, p∗2, . . . , p∗m}, DFS-
Prune examines all candidate tuples t = {p1, p2, . . . , pm}
where pi has the same category as p∗i . For each candidate tuple
t, DFS-Prune progressively examines its prefixes in an as-

cending order: {p1}, {p1, p2}, . . . , {p1, p2, . . . , pm}. For each
prefix of t, DFS-Prune derives an upper bound of SIM(t, t∗),
which can be used to determine whether t is unpromising to
become the top-k tuples. (Namely, t is unpromising if the

upper bound is already smaller than the current k-th maximum
similarity value.) Once t is pruned based on a certain prefix,
further examination of longer prefixes will be skipped.

To facilitate the prefix-based pruning, DFS-Prune enumer-

ates a tuple t by selecting t’s points in turn for each dimension.
For each dimension, the points are ordered in a descending

order of their attribute similarities to the respective point

541

Authorized licensed use limited to: Cornell University Library. Downloaded on December 01,2023 at 03:27:50 UTC from IEEE Xplore. Restrictions apply.

Cell tuple (, ,)
(, ,)Point tuples (, ,) (, ,)(, ,) (, ,) (, ,)

Cell

Cell

Cell
Point,

Point, , Point

Fig. 3: Point tuples in a cell tuple.

in the example t∗. Suppose that certain prefix {p1, ..., pi}
has been determined during enumeration, and their attribute

similarities to the respective point in example t∗ are {r1, ..., ri}
respectively. Then for any candidate tuple that has not been

enumerated, its attribute similarity with respect to t∗ has been
shown to be upper bounded by m − i +

∑i
j=1 ri.

DFS-Prune also employs an upper bound of spatial similar-
ity as follows. Let the distance vector of any tuple t with the
same prefix {p1, p2, ..., pi} be Vt = {y1, y2, ..., yu, ?, ..., ?}
where u = i(i − 1)/2 and ? are unknown values. Given
the distance vector Vt∗ = (x1, ..., xm′) of t∗, where m′ =
m(m − 1)/2, DFS-Prune gives the following spatial sim-
ilarity upper bound of any candidate tuple t with prefix
{p1, p2, ..., pi}.

SIMs(t, t
∗) ≤
√

A2

C
+
∑m′

j=u+1
x′j

2 (5)

where x′j =
xj√∑m′
i=1 x

2
i

, A =
∑u

j=1 x′jyj , C =
∑u

j=1 y2
j .

III. OUR SOLUTION

The key to improving the efficiency of evaluating CSEQ is

to reduce the number of candidate tuples to be examined. We

first outline the following three steps to achieve this goal.

Space Partitioning. The first step is to reduce the search space
by partitioning the whole search space into smaller subspaces

so that many unpromising candidate tuples are immediately

ruled out. To explain, observe that for the given example t∗,
a valid candidate tuple should not contain two points whose

distance exceeds β||Vt∗ ||, as this would break the CSEQ’s β-
norm restriction. In other words, if there is a tuple containing

two points that have a distance greater than β||Vt∗ ||, then
the tuple’s norm must exceed β||Vt∗ || because it must be

greater than the distance between any two points in the tuple.

This violates the β-norm constraint, and as a result, the tuple

cannot be an output of CSEQ. Based on this property, one

straightforward idea is to divide the entire search space into

multiple subspaces with diagonal lengths at most β||Vt∗ ||, and
search each subspace respectively. This method, however, will

overlook candidates whose points span multiple subspaces,

resulting in repeated examinations of the same candidate tuple.

We address this issue by encircling each subspace a band-

shaped auxiliary subspace of width β||Vt∗ ||. As such, we

ensure that each candidate resides within the union of one

subspace and its auxiliary subspace. For efficiency, we further

make sure that each candidate is searched only once. We will
elaborate this technique in Sections III-A and III-B.

Two-Phase Pruning. The second step involves a two-phase

pruning. On each subspace, we impose a grid with cell sizes

of d×d, with d as a parameter. The idea is to conduct pruning
at the cell level. To avoid confusion, let us refer to a tuple

Query Example 1 Query Example 2
Sampling Sampling

Points with similar color similar attributes. Random Sampling Query-Dependent Sampling

Fig. 4: Benefits of Query-Dependent Sampling.

as a point tuple; each point tuple t can be uniquely mapped
to a cell tuple, which consists of the cells that respectively

contain the points in t. As shown in Figure 3, a cell tuple

that consists of cells c1, c2 and c3 contains six point tuples.
Then, the similarity between the example tuple and a cell

tuple can be estimated (more details in Section III-C), and

unpromising cell tuples are directly pruned without touching

the point tuples contained in it. In other words, the search

is realized in two phases: we first conduct pruning based on

the cell tuples, followed by checking the validity of the point

tuples inside the remaining cell tuples.

Query-Dependent Sampling. In the third step, we apply

a sampling technique where only ξ points are preserved in

each cell during the search, with ξ as a parameter. One

straightforward idea is to randomly sample ξ points from

each cell. However, this simple approach may significantly

affect the accuracy. An example for ξ = 1 is shown in

Figure 4, where each cell only retains one node to answer a

query. Consider the two examples with significantly different

attribute-values, one indicated by red nodes and the other

indicated by gray nodes. Our query-dependent sampling can

successfully select the nodes (one from each cell, linked by

dotted red lines) with the most similar attribute-values to the

example in both queries. In contrast, the random sampling

technique, which randomly selects one node from each cell,

easily fails to retain desired tuples (see the selected nodes

linked by dotted blue lines). We will discuss the detailed

techniques in Section III-C.

Next, we will first present HSP, which is a basic and exact

algorithm that employs the space partitioning technique. Then,

we consolidate the above three techniques to design the LORA

algorithm.

A. Hierarchical Space Partitioning Scheme

In this section, we develop a technique to partition the whole

space into subspaces, such that we only need to enumerate

points in the same subspace to generate valid tuples instead

of doing so in the entire space.

The partitioning technique consists of two steps. First, it

hierarchically divides the space into subspaces from the middle

of horizontal or vertical dimensions alternatively, as shown in

Figure 5; the partitioning stops when the subspace contains no

……

……

……

the entire
space subspace core subspace

space without points
points

space with points

Fig. 5: Space partitioning.

542

Authorized licensed use limited to: Cornell University Library. Downloaded on December 01,2023 at 03:27:50 UTC from IEEE Xplore. Restrictions apply.

core subspace (White)

auxiliary subspace (Blue)

ac-subspace

Fig. 6: A core subspace and its auxiliary subspace.

points, or each subspace has a diagonal length smaller than

β||Vt∗ ||. Denote the subspaces with diagonal length smaller

than β||Vt∗ || as core subspaces. It is obvious that all core
subspaces are disjoint, and the union of them is the whole

space. Also, each point belongs to exactly one core subspace.

Note that the distance between any points within the same core

subspace is smaller than β||Vt∗ ||. This allows us to filter out
point tuples that are far apart from each other and clearly do

not satisfy the distance constraints, thus reduces the number

of candidates that need to be searched.

Second, we surround each core subspace Sc with a band-

shaped auxiliary subspace Sa, such that for every point in

a core subspace, all CSEQ candidate tuples containing it are

within the union of the core subspace and its corresponding

auxiliary subspace. Specifically, given a core subspace, its

auxiliary subspace is a band-shaped space surrounding the

core subspace with width β||Vt∗ ||, as shown in Figure 6,

where a core subspace is in white and its auxiliary subspace

is shaded. Note that the auxiliary subspaces of different core

subspaces can overlap, and a point may be in multiple auxiliary

subspaces, but only belongs to exactly one core subspace.

Given a core subspace Sc, denote the union of the core

subspace and its auxiliary subspace Sa as its ac-subspace Su.

For each point in a core subspace, all CSEQ candidate tuples

containing the point must be within the corresponding ac-

subspace, which can be proved by contradiction. Specifically,

every point in the core subspace has a distance larger than

β||Vt∗ || to any point outside the corresponding ac-subspace,

which contradicts the definition of CSEQ. Further, considering

that all core subspaces are disjoint (i.e., a point is in exactly

one core subspace) and their union is the entire space, it

is sufficient to search within the ac-subspaces of all core

subspaces to solve CSEQ without missing any valid tuples.

B. Exact Solution: HSP

A naive solution to CSEQ is to enumerate all possible

candidate tuples in each ac-subspace Su. Although this naive

solution will not miss any results, the downside is that a

candidate tuple may be enumerated multiple times, leading

to inefficiency. For instance, given an example tuple t∗ whose
first point is in category a, it is possible that a point p1 in

category a falls in a core subspace and the auxiliary subspace

of another core subspace (i.e., point p1 is in multiple ac-

subspaces). If we blindly search all ac-subspaces, a candidate

tuple containing p1 as the first element will be enumerated

multiple times since p1 is in many ac-subspaces.
In this section, we address this issue by leveraging the

properties of core subspaces and enumerating each candidate

tuple only once. Specifically, all core subspaces are disjoint,

and a point is exactly in one core subspace. Therefore, for

Algorithm 1: Exact-DFS(i, S, t, G, R)

Input: Level id i, Space S, point tuple t, list of point lists
G, top-k result R;

1 if i > m then
2 if 1

β
≤ ||Vt||

||Vt∗ || ≤ β then
3 Update R with t;

4 else
5 Let a be the category of i-th point in t∗;
6 for each point pj ∈ Gi with category a do
7 if i > 1 or pj is in the core-subspace of S then
8 Set the i-th element ti of tuple t as pj ;
9 Calculate the upper bound SIMa and SIMs;
10 Let Rmin be the minimum similarity in R;
11 if |R| < k or αSIMs + (1− α)SIMa > Rmin

then
12 Exact-DFS(i + 1, S, t, G,R) ;

a candidate tuple t = (p1, p2, ..., pm), we only enumerate it

when p1 is in a core subspace, and ignore the cases when p1
is in auxiliary subspaces.

Lemma 1: Given all ac-subspaces, if a CSEQ candidate

tuple t = (p1, p2, ..., pm) is enumerated only when processing
the ac-subspace containing p1 in its core subspace, then after
processing all ac-subspaces, every candidate tuple will be

enumerated exactly once.

Proof 1: Due to space limitations, we put the proof in our
technical report [17].

We first present an exact and basic solution HSP for

the CSEQ problem. HSP iterates all ac-subspaces; in each

ac-subspace, HSP enumerates candidate tuples in a similar

fashion to DFS-Prune, and prunes unpromising candidate

tuples based on refined upper bounds for attribute similarity

and spatial similarity. Compared with DFS-Prune [11], HSP

conducts its search in much smaller ac-subspaces, leading

to much higher efficiency. Further, it provides three refined

techniques as follows.

1) Modified first-point selection. Within each ac-subspace,
HSP enumerates candidate tuples only when their first points

are located in the core subspace. Such enumeration is ben-

eficial because it guarantees that each candidate tuple is

enumerated at most once (see Lemma 1).

2) Refined upper bound for SIMa. For a candidate tuple
with prefix {p1, ..., pi}, we let the attribute similarities between
each point pj (1 ≤ j ≤ i) and the respective point in example
t∗ be {r1, ..., ri} respectively. Then, for any tuple that has
not been enumerated, there is an upper bound of its attribute
similarity with respect to t∗:

SIMa =

i∑
j=1

rj +

m∑
j=i+1

rj (6)

where rj denotes the maximum attribute similarity between

a point in the ac-subspace and the j-th point in t∗. This upper
bound holds because the attribute similarities corresponding

to the first i dimensions are bounded by ri and those for the
remaining m − i dimensions are bounded by rj . This bound
refines the bound from DFS-Prune because rj ≤ 1.

543

Authorized licensed use limited to: Cornell University Library. Downloaded on December 01,2023 at 03:27:50 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: HSP
Input: Space S, point set P , the example t∗, β;
Output: Top-k result R;

1 Get ac-subspaces S = {Su
1 , Su

2 , ..., Su
h} (Sec. III-B);

2 Result set R ← ∅;
3 Lists G← ∅;
4 for Su

i ∈ S do
5 for each point t∗[j] in the example t∗ do
6 Sort each point p in Su

i with the same category as
t∗[j] in descending order of SIMa(p, t

∗[j]), and
store them in Gj ;

7 Add Gj into G ;

8 Set tuple t as empty ;
9 Exact-DFS(1, Su

i , t, G,R);

3) Refined upper bound for SIMs. HSP also employs a
refined spatial similarity bound. Specifically, in deriving the

inequality in Eq. 5, DFS-Prune defines w =
∑m′

j=u+1 y
2
j∑u

j=1 y
2
j
, and

gives an upper bound

SIMs(t, t
∗) ≤ A√

C
· 1√

1 + w
+

√∑m′

j=u+1
x′2j

√
w

w + 1
(7)

Applying the norm constraint in w, we have

||Vt∗ ||2
β2C

− 1 ≤ w =

∑m′
j=1 y2

j −
∑u

j=1 y2
j∑u

j=1 y2
j

≤ β2||Vt∗ ||2
C

− 1 (8)

Then, we derive that 1√
w+1

≤ β
√
C

||Vt∗ || and
√

w
w+1 =√

1− 1
w+1 ≤

√
1− C

β2||Vt∗ ||2 . Applying these inequalities to
Eq. 7, we obtain a new bound

SIMs(s, t
∗) ≤ βA

||Vt∗ || +
√∑m′

j=u+1 x2
j

||Vt∗ ||2
√

1− C

β2||Vt∗ ||2 (9)

where A =
∑u

j=1 x′jyj and C =
∑u

j=1 y2
j . During pruning,

we select the upper bound SIMs as the tighter one between

Eq. 5 and the new bound.

In a nutshell, HSP (Algorithm 2) enumerates candidate

tuples in each ac-subspace and prunes unpromising candidate

tuples by the above upper bounds. Specifically, HSP first

sorts the points of each category in descending order of their

attribute similarities to the given example t∗ (Algorithm 2

Line 6). Then, HSP enumerates candidate tuples (Algorithm 2

Line 9), which can be realized by the Exact-DFS function

(Algorithm 1). Invoking Exact-DFS(i, S, t, G, R) first selects
the i-th point in the tuple (Algorithm 1 Line 8) and then selects

the next point for the tuple during recursion (Algorithm 1

Line 12). The points are always selected in the ac-subspace,

except for the first point, which is selected in the core subspace

due to Lemma 1 (Algorithm 1 Line 7). Before selecting

the next point for the tuple, if the upper bound derived

based on the current prefix is less than the current k-th
maximum similarity to t∗, we can skip all candidates sharing
the same prefix (Algorithm 1 Lines 9-11). Once all the m
points have been selected (Algorithm 1 Line 1), HSP first

checks if the newly formed tuple t meets the norm constraint
1
β ≤ ||Vt||

||Vt∗ || ≤ β (Algorithm 1 Line 2), then compares it with

the current maintained top-k results, and finally updates the

Algorithm 3: LORA
Input: All ac-subspaces {Su

1 , Su
2 , ..., Su

h}, example t∗;
Output: Approximate top-k results R;

1 Set the priority queue R as empty;
2 for each subspace S in all ac-subspaces {Su

1 , Su
2 , ..., Su

h} do
3 Split S into cells of size d× d, denoted by

Ĝ = {g1, g2, ..., gw};
4 for each point t∗[i] in t∗ do
5 a← category of t∗[i];
6 Set point lists Ga

1 , ..., G
a
w as empty;

7 for each point pi ∈ S with category a do
8 Let gj be the cell containing pi;
9 Ga

j ← Ga
j ∪ {pi};

10 for j ∈ {1, ..., w} do
11 Point-Sample(Ga

j , t
∗[i]);

12 G← {Ga
j |j, a};

13 for each point t∗[i] of each point in t∗ do
14 for each cell gz in Ĝ do
15 SIMa(t

∗[i], gz)← maxp∈gz{SIMa(t
∗[i], p)};

16 Sort gz in descending order of SIMa(t
∗[i], gz);

17 Update R in Cell-Tuple-Enum(1, ∅, Ĝ, G,R) ;

results (Algorithm 1 Line 3).

C. LORA: Local Approximation

The HSP algorithm needs to iterate all ac-subspaces, and

enumerate all candidate tuples within each ac-subspace. Al-

though an ac-subspace is much smaller compared with the

whole data space, it is still expensive to process each ac-

subspace to obtain all candidate tuples within it. In order to

reduce the cost per ac-subspace, we propose an approximate

algorithm, called LORA (LOcal Representative Approxima-

tion), which efficiently processes ac-subspaces and produces

approximate results with rigorous theoretical guarantees.

One key observation inspiring LORA is that, in the real-

world POI datasets, points in the same category are often clus-

tered in a small region, e.g., many restaurants in a shopping

mall. These restaurants are in the same category and have

similar attributes. Intuitively, if one can first handle groups of

same-category points in small regions to identify rough results,

and then refine them to get the final top-k tuples, the time cost
incurred per ac-subspace can be significantly reduced.

Specifically, as shown in Figure 7, given an ac-subspace

Su, we first grid it into small cells, with cell size d × d. We
consider that the points located in the same cell are in a group.

In Su, we can select one cell for each category in t∗ to form
a cell tuple, which is a tuple that contains m cells.

In the high-level idea, LORA conducts the enumeration of

tuples in two phases. It first enumerates cell tuples (rough

phase) for each ac-subspace, and then for each cell tuple, it

generates the point tuples (refining phase) whose points are

respectively located in each cell in the cell tuple.

The detailed procedure can be found in Algorithms 3, 4, 5.

Algorithm 3 is the main function that calls Algorithm 4

that describes the cell-tuple enumeration. Algorithm 4 is a

recursive function and invokes Algorithm 5 that describes

the point-tuple enumeration. Next, we will describe the three

544

Authorized licensed use limited to: Cornell University Library. Downloaded on December 01,2023 at 03:27:50 UTC from IEEE Xplore. Restrictions apply.

Cell Split on ac-subspace Cell Tuple Enumeration

Prune by Upper Bound

(, ? , ?) (, , ?) (, ,)
Fig. 7: The cell tuple enumeration process of LORA.

algorithmic procedures. To facilitate the discussion, we will

first focus on illustrating the main flow of each procedure and

defer the details to separate paragraphs if necessary.

In Algorithm 3, for each ac-subspace S, after imposing a
grid on S (Line 3), we inspect the category a of each point

t∗[i] in t∗, and assign the points in S to the corresponding

category lists Ga
i (Lines 4-9); ultimately, each list Ga

j contains

all the points with category a in cell gj . We then conduct

a Point-Sample procedure based on each list Ga
j (Lines 10-

11), followed by invoking the Cell-Tuple-Enum algorithm to

extract the final top-k result R. As the Point-Sample procedure
is a relatively independent module about sampling techniques

applied in each cell, we defer the interesting discussion to

Section III-C. For now, we focus on the main candidate

generation function of Algorithm 3, which is the Cell-Tuple-

Enum algorithm. To prepare the input for the Cell-Tuple-

Enum algorithm, for each point v in the example, we sort

the cells in the ac-subspace in a descending order of their

maximum attribute similarity to point u (Lines 13-16). Here,

the maximum attribute similarity between point u and a cell

is the maximum attribute similarity between point u and each

point in the cell. Hence, we have overall m sorted lists of cells

stored in Ĝ as the input to the Cell-Tuple-Enum algorithm.

1) Cell-Tuple Enumeration: The cell-tuple enumeration

is realized by a recursive function Cell-Tuple-Enum (Algo-

rithm 4), which lists the cell-tuples in a depth-first-search

(DFS) manner. This is similar to the Exact-DFS function

employed in HSP, except that we “enumerate cell tuples based

on m sorted cell lists” instead of “enumerate point tuples

based on m sorted point lists”. That is, we select one cell

from each of the m cell lists to create cell tuples. The cells in

each list are selected in descending order of their maximum

attribute similarity to the respective point in t∗. We enforce
effective cell tuple pruning during the search, to immediately

prune those cell tuples that cannot generate top-k point tuple

candidates (Lines 6-7). Specifically, we compute an upper

bound V̄ of the attribute similarity between a cell tuple and the

example t∗ (details will be explained shortly in the paragraph
“Cell-Tuple-based Upper Bound”.) Then, the overall similarity

upper bound is computed by α · 1 + (1 − α) · V̄ because the

spatial similarity is bounded by 1 and the attribute similarity
is bounded by V̄ . If this upper bound does not exceed the

current top-k similarities, we can safely skip the cell tuple

for point tuple generation (Line 7). Otherwise, we invoke

Cell-Tuple-Enum (explain shortly in Subsection “Point-Tuple

Enumeration”) to check the point tuples within the cell tuple

(Line 8).

Cell-Tuple-based Upper Bound. The upper bound is based
on the prefix and can be computed as follows. Suppose at some

Algorithm 4: Cell-Tuple-Enum(i, l, Ĝ, G, R)

Input: Level id i, cell tuple l, cell list Ĝ, point lists G,
current top-k result R;

1 if i > m then
2 Update R in Point-Tuple-Enum(G,R);

3 else
4 for each cell gj in cell list Ĝ do
5 Set the i-th cell of l: l[i]← gj ;

6 Calculate the upper bound V (see Section III-C
Cell-Tuple based Upper Bound paragraph) ;

7 if |R| < k or α + (1− α) ∗ V > Rmin then
8 Cell-Tuple-Enum(i + 1, l, Ĝ, G,R) ;

point we have constructed a prefix of the cell tuple, denoted

as c1c2 . . . cj , where ci is a cell. Then, we can compute the
maximum attribute similarity si between a point in cell ci and
t∗[i], where t∗[i] is the i-th point in the example t∗. For any
remaining dimension j, the respective attribute similarity is

upper bounded by the maximum attribute similarity between

each node in the ac-subspace and t∗[j].
Example. An example procedure of the pruning-based cell

tuple enumeration is shown in Figure 7. Suppose the cells c1,
c2, c3 have the maximum attribute similarities to t∗[1], t∗[2],
t∗[3], respectively. Then, LORA sequentially selects c1, c2 and
c3 to form a cell tuple, according to the DFS search. When

prefixes “(c1, ?, ?)” or “(c1, c2, ?)” are formed, LORA checks

whether the candidate cell tuple can be pruned based on the

prefix-based upper bound. For “(c1, c2, ?)”, we compute the
maximum attribute similarity between c1 (resp. c2) and t∗[1]
(resp. t∗[2]), and then obtain the maximum attribute similarity

between any candidate point and t∗[3]. The sum of these

attribute similarities can be regarded as an upper bound of

the attribute similarity, which is then combined with a spatial

similarity upper bound “1” to form the final similarity upper

bound. If this upper bound does not exceed the k-th similarity
currently found, then (c1, c2, ?) is pruned, and the search will
go back to the state (c1, ?, ?).

2) Point-Tuple Enumeration: The procedure is shown in

Algorithm 5, which is designed based on two observations: (1)

two point tuples contained in the same cell tuple have similar

spatial similarities to the example t∗, and thus Algorithm 5

focuses on getting point tuples with the highest attribute

similarities to t∗; (2) for any final top-k result, there must

be an ac-subspace containing it as the top-k result within the

ac-subspace. Hence, it is sufficient to only enumerate the top-k
results for each ac-subspace.

Particularly, for each cell tuple, we first construct m lists of

Sorted point
list in the cell

A Cell Tuple

rank-representation [2,2,1]

[1,1,1]
[1,1,2][1,2,1][2,1,1] out-neighbors

[3,1,1] [2,2,1] [2,1,2] [1,3,1] [1,2,2] [1,1,3]
Construct
rank-representation
graph weight , (,)

Root rank-representation

Fig. 8: The rank-representation graph of LORA.

545

Authorized licensed use limited to: Cornell University Library. Downloaded on December 01,2023 at 03:27:50 UTC from IEEE Xplore. Restrictions apply.

Algorithm 5: Point-Tuple-Enum(G, R)

Input: G contains point lists for each category, R contains
current top-k result;

1 Set maximum priority queue Q← ∅;
2 Insert {r0, 0} into Q;
3 visited[r0]← true;
4 while Q is not empty and |R| < k do
5 Pop the front element of Q as [t, dis(r0, t)];

6 if 1
β
≤ ||Vt||

||Vt∗ || ≤ β then
7 if |R| < k or dis(r0, t) ≤ min

v∈R
{dis(r0, v)} then

8 Update R with t;

9 if |R| ≥ k and dis(r0, t) > min
v∈R

{dis(r0, v)} then
10 Return;
11 for each neighbor v of t in Gattr do
12 w(t, v)← SIMa(t, t

∗)− SIMa(v, t
∗);

13 if v was not visited or
dis(r0, v) > dis(r0, t) + w(t, v) then

14 dis(r0, v)← dis(r0, t) + w(t, v);
15 Insert [v, dis(r0, v)] into Q;
16 visited[v]← true;

points, where the i-th list contains the points in the ac-subspace
that have the same category as t∗[i]. The points in the i-th list
are sorted in descending order of their attribute similarities

to t∗[i] (due to observation (1)). Then, a point tuple can be

represented by the corresponding ranks in these m point lists,

which we refer to as rank-representation. For example, when
m = 3, [1, 1, 2] is a rank-representation of the tuple formed
by the 1st-rank, 1st-rank, and 2nd-rank points respectively

picked from the three point lists. We say point tuple t2 is

an out-neighbor of point tuple t1, if t2’s rank-representation
only differs from t1’s in one dimension and in that dimension
t′2s rank is one position lower than t′1s. For example, [1, 1, 2]
is an out-neighbor of [1, 1, 1] because its ranking in the third
dimension is lower by one position.

Given a cell tuple, we can construct a graph Gattr for an

efficient enumeration. We let each point tuple generated from

the cell tuple be a graph node; a node t1 has a directed edge to
another node t2 if and only if t2 is an out-neighbor of t1; the
weight of the edge (t1, t2) is SIMa(t1, t∗)−SIMa(t2, t∗), where
SIMa denotes the attribute similarity. Obviously, the graph is

“rooted at” node [1, 1, 1], denoted by r0. The graph Gattr

is illustrated in Figure 8 and has the following interesting

property.
Lemma 2: Among all the point tuples generated from a cell

tuple, a point tuple has the i-th attribute similarity to t∗, if
and only if it is the i-th closest node to r0 in Gattr, where the
closeness is measured by the shortest path distance dis(·, ·).
Particularly, for any node t ∈ Gattr, we have

SIMa(t, t
∗) = SIMa(r0, t

∗)− dis(r0, t)

By Lemma 2, searching for the point tuples with top-k
attribute similarities to t∗ can be conducted in a way similar
to finding top-k shortest paths from the root node r0 in

Gattr (Algorithm 5). We initialize a priority queue Q with

an element [r0, 0] (Lines 1-2), which means that the root node
r0 with distance 0 (from r0 itself) is put in Q, and the priority

Algorithm 6: Point-Sample(Ga
j , t∗[i])

1 Sort each point pi in each point list Ga
j in descending order

of its attribute similarity to t∗[i], the latter being the point
in t∗ of category a;

2 Keep the first ξ points in Ga
j as the sampled points;

is based on the distances from r0. Then, we perform multiple

iterations (Line 4), each of which extracts the front element

[t, dt] from Q (Line 5). This means that t is the node in Q with

the shortest distance from r0 (or equivalently, the maximum

attribute similarity to t∗). If t satisfies the distance constraint
defined in CSEQ (Line 6), then we check the possibility of t
being top-k attribute-similar results (Lines 7 - 8). Particularly,

we can directly compare the shortest distance dis(r0, t) and
the shortest distances between r0 and nodes in R for this

purpose due to Lemma 2 (Line 7). If there are k results

and no more promising results can be further obtained, the

program terminates (Lines 9-10). Afterwards, we check the

out-neighbor v of t and examine whether dv < dt + w(t, v)
(Line 13). Here, SIMa(t, t∗)−SIMa(v, t∗) is the weight of the
edge (v, t) in Gattr (Line 12).

D. Query-Dependent Sampling

Sampling is a powerful technique to improve the computa-

tion efficiency. In LORA, we sample the points in each cell to

speed up the computation. Unfortunately, applying the typical

random sampling here is not satisfactory as it may significantly

impact the accuracy (recall the example in Figure 4). We

suggest a query-dependent sampling to address this issue, and

show that this approach gives high efficiency and accuracy.

Specifically, the query-dependent sampling is achieved by

the Point-Sample procedure (Algorithm 6); that is, we only

consider a point tuple as a candidate, if it consists of m points

in the sample sets. In LORA’s sampling, we employ a query-
dependent fashion of sampling; that is, for the query example
tuple t∗ and a cell tuple consists of cells ci (1 ≤ i ≤ m),
each cell ci samples its points by retaining top-ξ points with

the highest attribute similarity to t∗[i](1 ≤ i ≤ m), the i-th
point in t∗. The intuition is that, such sampled points have

higher attribute similarities to the corresponding points in t∗,
and hence, they are highly possible to constitute point tuples

with higher similarities to t∗.
Accuracy Analysis. From the experiments, we observe that

even when ξ is relatively small (e.g., ξ = 10), LORA still gives

high accuracy, demonstrating the effectiveness of our sampling

techniques. When ξ is sufficiently large, the following result

shows the approximation ratio of LORA.

Theorem 3: Given the top-k optimal result tuples
t1, t2, ..., tk for CSEQ with respect to the example t∗, and the
approximate top-k result tuples t̂1, t̂2, ..., t̂k output by LORA,∀i ∈ {1, 2, .., k}, we have
SIM(ti, t

∗) ≤ (1 +
2βd

√
m2 −m

‖Vt∗‖
) · SIM(t̂i, t∗) + α · 2βd

√
m2 −m

‖Vt∗‖
By Theorem 3 and let d ≤ ε ‖Vt∗‖

2β
√
m2−m for an approximation

parameter ε, we have

SIM(ti, t
∗) ≤ (1 + ε) · SIM(t̂i, t∗) + αε

546

Authorized licensed use limited to: Cornell University Library. Downloaded on December 01,2023 at 03:27:50 UTC from IEEE Xplore. Restrictions apply.

On the other hand, as ti’s are optimal results, we have

SIM(t̂i, t
∗) ≤ SIM(ti, t

∗)

This gives us SIM(t̂i, t∗) ≤ SIM(ti, t∗) ≤ (1+ε)·SIM(t̂i, t∗)+
αε. Hence, given any example t∗, the tuning parameter d
allows LORA’s accuracy to be arbitrarily close to the exact

solution.

IV. EXPERIMENTS

We evaluate the efficiency and accuracy of LORA, HSP,

and DFS-Prune, and compare them in various settings.

Datasets.We use the Yelp POI dataset [18], which has 77,444
POIs and 1395 categories, and the Gaode dataset [19], which

contains 10,000,000 POIs and 20 categories. Each POI is

associated with its geographical location and attributes. The

attributes include “rating”, “number of reviews”, and “sub-

categories”. We also synthesize various sized datasets for the

scalability testing, as shown in Table II.

Queries. For each test, we create 100 queries, each is an

example consisting of objects with different categories. As the

Yelp dataset covers a smaller spatial area, the objects that make

up the query examples are randomly chosen. In contrast, the

Gaode dataset covers a larger spatial area. Hence, we bound

the distances between the objects in each example to make the

example more meaningful.

Parameters.We vary the tuple size in [2, 6] (3 by default), the
k value in [1, 9] (5 by default), α in [0.1, 0.9] (0.5 by default),

and β in [1, 9] (1.5 by default). For LORA’s experiments,

we introduce the cell split parameter D, indicating that each

ac-subspace is divided into D × D cells. The parameter D
uniquely determines a parameter d. The query cost is averaged
among all the queries; we measure the result quality of the

approximate algorithm LORA by the mean absolute error

(MAE) of LORA’s results, which is computed by averaging

the absolute errors of the similarities between the exact top-k
results and LORA’s top-k results.

Algorithms. We compare HSP and LORA with the state-of-

the-art search method DFS-Prune [11]. In our experiments, we

also evaluate LORA and HSP on SEQ and CSEQ-FP.

A. Performance for CSEQ

1) Overall Comparison: We compare the performance of

LORA, HSP, and DFS-Prune on different data for the CSEQ

problem. For this purpose, we sample different numbers of

POIs from two real datasets, namely Yelp and Gaode. Table

II shows the per-query costs for different methods. For a fair

comparison, the running time for LORA has included the costs

for space partitioning and sorting within cells.

We observe that the state-of-the-art method, DFS-Prune,

takes more than 300 seconds to answer a CSEQ query for

a small dataset with 50,000 POIs, implying an unsatisfactory

performance in real-world applications. In contrast, in the

same dataset, our exact algorithm HSP performs 15 times

faster compared with DFS-Prune, reducing the query cost

to about 21.61 seconds. Furthermore, LORA has the best

efficiency, taking only 1.14 seconds to process the query.

For larger datasets, the efficiency advantage can be more

significant, and LORA is up to 5000 times faster than DFS-

Prune with just a minor accuracy loss (LORA MAE). We

also notice that LORA’s running time scales sub-linearly with

dataset size, demonstrating substantially better scalability than

DFS-Prune, whose cost scales super-linearly.

The high efficiency of HSP comes from its hierarchical

partitioning scheme, which prunes a large number of tuples

that do not satisfy the norm constraint. LORA has stronger

scalability because it also effectively conducts pruning based

on query-dependent sampling techniques, being less sensitive

to the growth of datasets. We conclude that LORA strikes

an outstanding balance between efficiency and accuracy, and

the accuracy loss experienced by the LORA is negligible.

To further investigate the worst-case errors of LORA, we

report the Maximum Error (MAX), and the Standard Deviation

(STD) of errors for LORA, in Table III. These statistics, being

very close to 0, demonstrate that LORA’s result quality is

very close to that of the exact result even in the worst case.

Furthermore, LORA can be deployed for a dataset containing

107 POIs, at which data size all exact algorithms cannot finish
a query with reasonable running times. To conclude, LORA

greatly enhances the scalability of the example-based search.

2) Parameters Analysis: We conduct parameter analysis

on all the relevant parameters in CSEQ, to demonstrate that

LORA achieves high efficiency and accuracy across a wide

spectrum of parameter settings compared with DFS-Prune. We

consider four sampled datasets. For both Gaode and Yelp, we

sample two datasets containing 10, 000 POIs and 50, 000 POIs.
We show the effectiveness of each method using the average
similarity. For the top-k results obtained by each method, the

average similarity is the average of the k similarities between

the top-k results and the given example t∗. Due to space

limitations, we omit the discussion on parameters k and m
(the obvious ones) and put it in the technical report [17].

Grid Resolution D. As shown in Figures 9(a.1) and (a.3),

in terms of efficiency, LORA is the best, followed by HSP

and DFS-Prune, regardless of the changes of D. Particularly,

In Gaode dataset with 50, 000 POIs (see Figure 9(a.1)), DFS-
Prune’s efficiency is about 300 seconds per query, which is

impractical. While HSP significantly improves the running

time down to 20 seconds. LORA dramatically improves the

efficiency for typical D values. LORA’s running time increases

with D, because when each cell becomes smaller (larger D),

fewer points fall into a single cell. Hence, fewer points can

be filtered out by LORA’s sampling strategy, resulting in a

longer running time. For accuracy, as shown in Figures 9(a.2)

and (a.4), with the increase of D, the approximate result

obtained by LORA becomes closer to the exact results (i.e.,

the results obtained by HSP), as indicated by their similarities.

Since the number of cells increases with D, more points

cannot be filtered out by LORA and will be participated in

the point-enumeration process. This gradually approaches the

exact similarities obtained by enumerating all points.

Similarity Weight α. As shown in Figures 9(c.1)-(c.4), the

relative performance superiority of LORA is only slightly

547

Authorized licensed use limited to: Cornell University Library. Downloaded on December 01,2023 at 03:27:50 UTC from IEEE Xplore. Restrictions apply.

TABLE II: The efficiency of HSP and LORA on real datasets.

Yelp Dataset Gaode Dataset

#POIs Time Cost (s) LORA
MAE

LORA
Speedup #POIs Time Cost (s) LORA

MAE
LORA
SpeedupDFS-Prune HSP LORA DFS-Prune HSP LORA

1,000 0.51 0.04 0.06 0.0001 8.5 10,000 8.87 1.11 0.38 0.002 20+
5,000 7.92 0.21 0.51 0.00006 15.53 50,000 348.30 21.61 1.14 0.002 300+
10,000 31.44 1.51 1.46 0.00003 21.53 100,000 3734.34 55.92 1.21 0.001 3,000+
30,000 142.81 7.59 5.18 0.00002 27.57 500,000 >24hours 592.14 16.05 0.002 >5,000
50,000 436.12 20.87 8.02 0.00001 54.38 1,000,000 >24hours 3748.71 16.17 0.003 >5,000
77,445 1173.69 60.02 11.56 0.00001 101.53 10,000,000 >24hours >24hours 126.89 <0.012 >1,000

1km 3km 5km 7km 9km

0.85
0.90
0.95

1km 3km 5km 7km 9km

0.01
1

100

norm ||Vt*|| (Gaode) norm ||Vt*|| (Gaode)

(f.1)

(f.2)Si

m
ila

rit
y

Ti
m

e
(s

)

1km 3km 5km 7km 9km
0.1

1
10

100

1km 3km 5km 7km 9km
0.9992

0.9996

1.0000

(f.3)

norm ||Vt*|| (Yelp) norm ||Vt*|| (Yelp)

(f.4)

Ti
m

e
(s

)

Si
m

ila
rit

y

2 3 4 5 6
0.01

1
100

10000

2 3 4 5 6
0.992

0.996

1.000

Ti
m

e
(s

)

(e.3)

tuple size m (Yelp) tuple size m (Yelp)

(e.4)Si

m
ila

rit
y

1 3 5 7 9
0.01

1

100

Ti
m

e
(s

)

(d.1)

norm constraint (Gaode)
1 3 5 7 9

0.98

0.99

1.00

norm constraint (Gaode)

Si
m

ila
rit

y

(d.2)

0.1 0.3 0.5 0.7 0.9

0.1

10

1000

Ti
m

e
(s

)

(c.1)

similarity weight (Gaode)
0.1 0.3 0.5 0.7 0.9

0.97
0.98
0.99
1.00

Si
m

ila
rit

y

similarity weight (Gaode)

(c.2)

1 3 5 7 9
0.01

1

100

Ti
m

e
(s

)

(b.1)

result set size k (Gaode)
1 3 5 7 9

0.97
0.98
0.99
1.00

Si
m

ila
rit

y

result set size k (Gaode)

(b.2)

 DFS-Prune 10,000 POIs DFS-Prune 50,000 POIs HSP 10,000 POIs HSP 50,000 POIs LORA 10,000 POIs LORA 50,000 POIs

1 3 5 7 9
0.001

0.1
10

1000

1 3 5 7 9
0.88
0.92
0.96
1.00

Ti
m

e
(s

)

Si
m

ila
rit

y

grid resolution D (Gaode) grid resolution D (Gaode)

(a.1)

(a.2)

2 3 4 5 6
0.001

1

1000

Ti
m

e(
s)

(e.1)

tuple size m (Gaode)
2 3 4 5 6

0.92
0.96
1.00

Si
m

ila
rit

y

tuple size m (Gaode)

(e.2)

0.1 0.3 0.5 0.7 0.9
0.1

10

1000

0.1 0.3 0.5 0.7 0.9
0.9996

0.9998

1.0000

Ti
m

e
(s

)

(c.3)

similarity weight (Yelp) similarity weight (Yelp)

(c.4)Si

m
ila

rit
y

1 3 5 7 9

0.1

10

1000

1 3 5 7 9
0.9996

0.9998

1.0000

Ti
m

e
(s

)

Si
m

ila
rit

y

(d.3)

norm constraint (Yelp) norm constraint (Yelp)

(d.4)

1 3 5 7 9
0.01

1

100

1 3 5 7 9

0.992
0.996
1.000

Ti
m

e
(s

)

Si
m

ila
rit

y

(a.3)

grid resolution D (Yelp) grid resolution D (Yelp)

(a.4)

1 3 5 7 9
0.1

1
10

100

1 3 5 7 9
0.9994

0.9997

1.0000

Ti
m

e
(s

)

Si
m

ila
rit

y

(b.3)

result set size k (Yelp) result set size k (Yelp)

(b.4)

Fig. 9: The performance for different parameters of DFS-Prune, HSP and LORA on Gaode and Yelp datasets.

0.90 0.92 0.94 0.96 0.98 1.00
0.001

0.1

10

0.90 0.92 0.94 0.96 0.98 1.00
0.001

0.1

10

0.90 0.92 0.94 0.96 0.98 1.00
0.001

0.1

10

1000

0.92 0.94 0.96 0.98 1.00
0.001

0.1

10

1000

Ti
m

e
(s

)

Similarity
(a) 10,000 POIs

LORA DFS-Prune

Ti
m

e
(s

)

Similarity
(b) 30,000 POIs

Ti
m

e
(s

)

Similarity
(c) 50,000 POIs

Ti
m

e
(s

)

Similarity
(d) 100,000 POIs

Fig. 10: The running time and similarity of LORA and DFS-Prune in SEQ problem.

TABLE III: More details of LORA’s accuracy.

#POIs Yelp #POIs Gaode
STD MAX STD MAX

5,000 0.0001 0.0009 10,000 0.007 0.092
10,000 5.1e-05 0.0005 50,000 0.008 0.082
30,000 2.7e-05 0.0002 100,000 0.004 0.032
50,000 3.4e-05 0.0004 500,000 0.008 0.061
77,445 1.8e-05 0.0001 1,000,000 0.010 0.081

affected by α. The reason is that as long as both spatial

similarity and attribute similarity need to be simultaneously

considered, their relevant computation costs are comparable.

Hence, tuning α does not significantly affect the performance.

Furthermore, for all the tests, the average similarities to the

given example are higher than 98%. Particularly, for Yelp, all
the similarities of LORA are close to 1, showing the high

effectiveness of LORA. This is because the POI in the Yelp

dataset has been associated with abundant text information.

Hence, it is prone to produce a higher attribute similarity value

between a candidate tuple and the given example.

Norm Constraint β. As shown in Figures 9(d.1)-(d.4),

LORA’s running time is only slightly affected by β, as LORA’s
complexity is more relevant to the constant ξ. However, we
observe that a larger β leads to higher similarity, owing to the

548

Authorized licensed use limited to: Cornell University Library. Downloaded on December 01,2023 at 03:27:50 UTC from IEEE Xplore. Restrictions apply.

DFS-Prune HSP LORA

0.6

0.8

1.0
Si

m
ila

rit
y

������ ���� ������ ����

DFS-Prune HSP LORA
1

10

100

1000

Ti
m

e(
s)

������ ���� ������ ����

Fig. 11: The performance for CSEQ-FP.

fact that more candidates are admitted with a larger β. Again,
we see all methods output results that have similarities higher

than 98%, with all different β’s and datasets.
Example Scale ||Vt∗ ||. As shown in Figures 9(f.1)-(f.4), for a
smaller ||Vt∗ || value (e.g., 1km), HSP and LORA outperform

DFS-Prune by more than one order of magnitude because

a smaller ||Vt∗ || makes a more pronounced space pruning

in hierarchical partitioning. As a result, HSP’s performance

becomes closer to LORA’s with the increase of ||Vt∗ ||.
Meanwhile, we observe that LORA’s similarity curve almost

overlaps with that of the exact solution.

B. Performance for SEQ and CSEQ-FP

Figure 10 reports LORA and DFS-Prune’s performance on

SEQ (by setting β to +∞ in CSEQ). The experiments are

conducted on four Gaode sampled POI sets, which consist

of 10,000 to 100,000 POIs; the efficiency (per-query time)

and similarity (averaged on top-k results similarities to the

example t∗) are reported. LORA’s result accuracy depends

on the grid resolution D. We therefore test the query cost

and similarities with D ranges in [1, 10], for DFS-Prune and
LORA. Within each sub-figure of Figure 10, there are 10 data
points showing the performance of LORA corresponding to

D ∈ [1, 10]. When D becomes larger, the grid becomes finer

and therefore LORA achieves a similarity closer to that of

DFS-Prune (which is the best similarity that can be achieved

as DFS-Prune is an exact algorithm). In the meanwhile, the

query cost of LORA goes up with the increase of the similarity.

One crucial observation is that, even when LORA achieves a

similarity that is extremely close to DFS-Prune, LORA still

runs around 3 orders of magnitude faster than DFS-Prune. This

demonstrates that LORA strikes an excellent balance between

efficiency and accuracy for answering SEQ.

We can also extend our algorithms to handle the CSEQ-

FP problem that returns tuples with some fixed points. For

evaluating the performance of CSEQ-FP, each query corre-

sponds to a size-5 example, with two fixed points that must

also appear in the result tuples. Figure 11 reports the results for

two sub-datasets of Gaode, showing that LORA also performs

drastically better than baselines for CSEQ-FP, as well as

retaining very high accuracy. Particularly, it reduces the time

cost by two orders of magnitude compared with DFS-prune,

while the similarities are higher than 0.98. It is also worth

noting that the exact algorithm HSP improves the efficiency by

an order of magnitude compared to DFS-prune. In a nutshell,

this experiment demonstrates that our proposed algorithms suit

the CSEQ-FP problem as well.

C. User Studies

Our user study focuses on two tasks: (1) Do users prefer

the example-based search over the filtering-based search under

some real-world scenarios? (2) To what extent will users be

happy to combine example-based and filtering-based search?

Methodology. We recruited 8 male and 5 female graduate

students online. All user studies were conducted online. After

consenting to the study, participants received a 5-minute hand-
written tutorial introducing basic concepts of example-based

search and filtering spatial query search (an adapted one from

Google Maps). Then participants are required to answer all

questions within 25 minutes.
Survey Questions. There are 4 questions in general where we
tried to simulate different real-world applications, for example,

the scenarios described in Example 1 and 2. Each question

contains five sub-questions where participants evaluated the

effectiveness of different search interfaces, explain the reason,

and compare whether they would like to have example-based

search and filtering-based search hand-in-hand, and briefly

give reasons of their choice. The central idea of the survey

is to find when users would prefer the example-based search

in some general real-world situations, and explore whether

having both example-based search and filtering will be an

option that participants would consider in the future.

Results. As for the question that we asked our participants to
evaluate which interface can help them better in finding POIs,

roughly 61.63% of the participants found that the example-

based search works better in real-world scenarios compared

to the 38.38% of those who chose the filtering-based search,

which implies that in the scenarios we created, the example-

based search can help participants more effectively find their

ideal locations. We also asked our participants to consider

whether they would like to have an interface serving both the

example-based search and the filtering-based search. Among

participants who chose filtering-based search over example-

based search, roughly 83.6% of them would like to see such

an interface supporting both. This implies that example-based

search has the potential to work hand-in-hand with the existing

spatial object search engines to satisfy a wider range of users

and even more general search requirements.

Qualitative Response. 1) Examples are helpful when there
are multiple constraints. Given the multiple search conditions
listed in the questionnaire, 11 participants mentioned that the
example-based search interface made their search easier. P2

directly pointed out that “Because I have multiple constraints

across many objects.”, and P7 also signaled that “It is more

convenient to compare the different candidates among the

map with everything I care about visible”, which implies that

the example-based search may offer a better human-device

interaction. In addition, adding constraints from scratch might

be a burden to users, as indicated by P9 “The filtering takes

more time for me.”. In general, our participants felt the burden

lifted and more time-efficient with the example-based search.

2) Filtering invites iterations. We also found that the example-
based search has some weaknesses. Particularly, among par-

ticipants who preferred filtering, they reported that through

filtering they might be able to find more specific information.

For example, P3 mentioned that “The first priority is to cut

549

Authorized licensed use limited to: Cornell University Library. Downloaded on December 01,2023 at 03:27:50 UTC from IEEE Xplore. Restrictions apply.

the budget”, and P11 mentioned that “I might also have

preferences over breakfast and daycare”. These implied that

participants expected to know more details through filtering.

This provides a window for the example-based search to

work complementarily with filtering: by adding the filtering

function on top of the example-based search, users can enjoy

the convenience and more effective interface confronting var-

ious constraints, and meanwhile, leverage the filtering to find

their ultimately personalized objects of interest.

V. OTHER RELATED WORKS

Learning Queries by Example. SEQ is inspired by the query-

by-example paradigm, or QBE, which was originally proposed

for relational databases [20]–[30] and graphs [31]–[33]. The

general purpose of QBE is to assist non-professional users

to understand the database better. QBE first allows users to

input multiple desired example output tuples. Then, it learns

the possible query intent from the user and identifies the

queries whose results cover all those user-given examples. In

general, QBE for relational databases is very different from

SEQ or CSEQ in map services, as the former depends on

reasoning the foreign-key relationships or tuple properties of

the given results to reconstruct the SQL queries, while the

latter focuses on finding similar spatially located objects to

the given example object set. Furthermore, in SEQ or CSEQ,

it is not feasible to request users to input a large number of

examples in the map service; hence, the solutions for QBE

cannot be applied in answering SEQ or CSEQ.

Exploration by Example. There is recent interest in the

topic of exploring massive data through examples [34]–[41].

The paradigm of explore-by-example focuses on discovering

the query intent by multiple rounds of user interaction and

exploration. For example, [34] provides a system which al-

lows the user to interactively label tuples as “interesting”

or “not interesting”. Through the process, it can construct a

model to describe the user interest. Recent techniques also

model this process as an active-learning [38] or reinforcement-

learning [37] process to facilitate query-intent discovery pro-

cess. Clearly, the focus of these works is different from SEQ

or CSEQ, as they focus on a multiple-round user interaction

process to capture the user interest queries.

VI. CONCLUSION

We present an in-depth study on the example-based query in

spatial services, and provide two algorithms HSP and LORA.

HSP is an exact algorithm that improves the state-of-the-art

method by up to 20 times, and LORA is a highly-accurate

approximate algorithm that improves upon the state of the art

by up to four orders of magnitude. We conducted a user study

to demonstrate the effectiveness of example-based search.

VII. PROOF OF THEOREM 3

Our proof contains two parts. First, we prove that for each

tuple ti of the exact top-k results, there exists a corresponding

tuple t′i generated from the same cell tuple as ti, satisfying

SIM(ti, t∗) ≤ (1+γ)·SIM(t′i, t∗)+α·γ, where γ = 2βd
√
m2−m

‖Vt∗‖ .

Then, we prove that after replacing t′i with the i-th result tuple

t̂i found by LORA, the inequality SIM(ti, t∗) ≤ (1 + γ) ·
SIM(t̂i, t∗) + α · γ holds.

To prove the first part, it is sufficient to show (i)

SIMa(ti, t∗) ≤ SIMa(t
′
i, t∗) and (ii) SIMs(ti, t∗) ≤ (1 + γ) ·

SIMs(t
′
i, t∗)+γ. Then applying SIM(ti, t∗) = α ·SIMs(ti, t∗)+

(1− α) · SIMa(ti, t∗) directly gives us SIM(ti, t∗) ≤ (1 + γ) ·
SIM(t′i, t∗) + α · γ (denoted by Inequality (iii)).

Proof of Inequality (i). Suppose that tuple ti =
{p1, p2, ..., pm} is the i-th result of the optimal top-k results.

Each point pj of ti falls into a cell gj , and these cells form a

cell tuple C = (g1, g2, ..., gm). Let R = {t1, t2, ..., tk} and S
be the set of point tuples generated in the cell tuple C. Then

among R ∩ S, tuple ti has the j-th largest attribute similarity
to the respective point in t∗. By Lines 11-16 in Alg. 5, LORA
can get a corresponding point tuple t′i, which has the j-th
attribute similarity (to the respective point in t∗) among S.
This further implies SIMa(ti, t∗) ≤ SIMa(t

′
i, t∗).

Proof of Inequality (ii). Let the distance vectors of ti, t′i
and t∗ be Vti = (y1, y2, ..., ym′), Vt′i = (y′1, y′2, ..., y′m′) and

Vt∗ = (x1, x2, ..., xm′), where m′ = m(m−1)
2 . We have

SIMs(ti, t
∗) =

∑m′
i=1 yixi

‖Vti‖ ‖Vt∗‖ ≤
∑m′

i=1(y
′
i + 2

√
2d)xi

‖Vti‖ ‖Vt∗‖

≤ 1

‖Vt∗‖
∑m′

i=1 y′ixi + 2
√
2d
∑m′

i=1 xi∥∥∥Vt′i

∥∥∥
∥∥∥Vt′i

∥∥∥
‖Vti‖

= SIMs(t
′, t∗)

∥∥∥Vt′i

∥∥∥
‖Vti‖

+
2
√
2d
∑m′

i=1 xi

‖Vt∗‖ ‖Vti‖

Note that
2
√
2d
∑m′

i=1 xi

‖Vti‖ ≤ 2
√
2d

√
m′
√∑m′

i=1 x
2
i√∑m′

i=1 y
2
i

≤ 2
√
2m′βd,

further by

∥∥∥Vt′
i

∥∥∥
‖Vti‖ ≤ (1+ 2

√
2m′βd
‖Vt∗‖) (A detailed proof is in our

technical report [17]) and m′ = m(m−1)
2 , we have

SIMs(ti, t∗) ≤ (1 + γ) · SIMs(t′i, t∗) + γ

Next, we prove the second part. For the k pairs (ti, t′i) satis-
fying Inequality (iii), we can assume SIM(t′j , t∗) ≥ SIM(t′i, t∗)
for j < i without loss of generality. To explain, if for

some j < i, SIM(t′j , t∗) < SIM(t′i, t∗) holds, then because

SIM(ti, t∗) ≤ SIM(tj , t∗) ≤ (1 + γ) · SIM(t′j , t∗) + α · γ <
(1 + γ) · SIM(t′i, t∗) + α · γ, the Inequality (iii) for ti and t′i
still holds. Furthermore, since LORA have enumerated t′1, t′2,
..., t′k together with other candidates, and finally obtain t̂1,
..., t̂k as the top-k result, we have SIM(t′i, t∗) ≤ SIM(t̂i, t∗).
Hence SIM(ti, t∗) ≤ (1 + γ) · SIM(t̂i, t∗) + α · γ. �

VIII. ACKNOWLEDGEMENTS

This research is supported by the Ministry of Educa-

tion, Singapore, under its Academic Research Fund Tier 1

(RG18/21), NTU startup grant (#020948-00001) and in part

by Singapore MOE AcRF Tier 1 Seed Funding (RS05/21).

This research is also supported in part by the National Nat-

ural Science Foundation of China under grant 61772138 and

62172107.

550

Authorized licensed use limited to: Cornell University Library. Downloaded on December 01,2023 at 03:27:50 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S.-H. Teng, “On
trip planning queries in spatial databases,” in International symposium
on spatial and temporal databases. Springer, 2005, pp. 273–290.

[2] T. Hashem, T. Hashem, M. E. Ali, and L. Kulik, “Group trip planning
queries in spatial databases,” in International Symposium on Spatial and
Temporal Databases. Springer, 2013, pp. 259–276.

[3] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou, “Shortest
path and distance queries on road networks: towards bridging theory and
practice,” in Proceedings of ACM SIGMOD International Conference on
Management of Data, 2013, pp. 857–868.

[4] H. Yin, W. Wang, H. Wang, L. Chen, and X. Zhou, “Spatial-aware
hierarchical collaborative deep learning for poi recommendation,” IEEE
Transactions on Knowledge and Data Engineering, vol. 29, no. 11, pp.
2537–2551, 2017.

[5] Z. Yao, Y. Fu, B. Liu, Y. Liu, and H. Xiong, “Poi recommendation:
A temporal matching between poi popularity and user regularity,” in
Proceedings of IEEE 16th ICDM. IEEE, 2016, pp. 549–558.

[6] W. Luo and A. M. MacEachren, “Geo-social visual analytics,” Journal
of spatial information science, vol. 2014, no. 8, pp. 27–66, 2014.

[7] W. Luo, P. Yin, Q. Di, F. Hardisty, and A. M. MacEachren, “A
geovisual analytic approach to understanding geo-social relationships
in the international trade network,” PloS one, vol. 9, no. 2, p. e88666,
2014.

[8] Y. Fang, R. Cheng, G. Cong, N. Mamoulis, and Y. Li, “On spatial
pattern matching,” in Proceedings of IEEE 34th ICDE. IEEE, 2018,
pp. 293–304.

[9] L. Chen, G. Cong, C. S. Jensen, and D. Wu, “Spatial keyword query
processing: an experimental evaluation,” Proceedings of the VLDB
Endowment, vol. 6, no. 3, pp. 217–228, 2013.

[10] C. Long, R. C.-W. Wong, K. Wang, and A. W.-C. Fu, “Collective spatial
keyword queries: a distance owner-driven approach,” in Proceedings of
the ACM SIGMOD, 2013, pp. 689–700.

[11] S. Luo, J. Hu, R. Cheng, J. Yan, and B. Kao, “Seq: Example-based
query for spatial objects,” in Proceedings of the ACM CIKM, 2017, pp.
2179–2182.

[12] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao, “Query processing
in spatial network databases,” in Proceedings of the VLDB Endowment.
Elsevier, 2003, pp. 802–813.

[13] M. A. Cheema, W. Zhang, X. Lin, Y. Zhang, and X. Li, “Continuous
reverse k nearest neighbors queries in euclidean space and in spatial
networks,” The VLDB Journal, vol. 21, no. 1, pp. 69–95, 2012.

[14] Y. Sun, W. Wang, J. Qin, Y. Zhang, and X. Lin, “SRS: solving c-
approximate nearest neighbor queries in high dimensional euclidean
space with a tiny index,” Proceedings of the VLDB Endowment, vol. 8,
no. 1, pp. 1–12, 2014.

[15] T. Bozkaya and M. Ozsoyoglu, “Distance-based indexing for high-
dimensional metric spaces,” in Proceedings of the ACM SIGMOD, 1997,
pp. 357–368.

[16] S. Luo, B. Kao, G. Li, J. Hu, R. Cheng, and Y. Zheng, “Toain:
a throughput optimizing adaptive index for answering dynamic k nn
queries on road networks,” Proceedings of the VLDB Endowment,
vol. 11, no. 5, pp. 594–606, 2018.

[17] Supplementary material for example-based spatial search at scale.
[Online]. Available: https://www.dropbox.com/s/3wlphqk89ro5ea0/
ICDE 2022 P58 Supplementary Material.pdf?dl=0

[18] Yelp dataset. [Online]. Available: https://www.yelp.com/dataset

[19] S. I. Center, “Map POI (Point of Interest) data,” 2017. [Online].
Available: https://doi.org/10.18170/DVN/WSXCNM

[20] H. Li, C. Chan, and D. Maier, “Query from examples: An iterative,
data-driven approach to query construction,” Proceedings of the VLDB
Endowment, vol. 8, no. 13, pp. 2158–2169, 2015.

[21] F. Psallidas, B. Ding, K. Chakrabarti, and S. Chaudhuri, “S4: top-k
spreadsheet-style search for query discovery,” in Proceedings of the ACM
SIGMOD, 2015, pp. 2001–2016.

[22] W. C. Tan, M. Zhang, H. Elmeleegy, and D. Srivastava, “Reverse
engineering aggregation queries,” Proceedings of the VLDB Endowment,
vol. 10, no. 11, pp. 1394–1405, 2017.

[23] D. V. Kalashnikov, L. V. Lakshmanan, and D. Srivastava, “Fastqre: Fast
query reverse engineering,” in Proceedings of the ACM SIGMOD, 2018,
pp. 337–350.

[24] A. Bonifati, R. Ciucanu, and S. Staworko, “Learning join queries
from user examples,” ACM Transactions on Database Systems (TODS),
vol. 40, no. 4, pp. 1–38, 2016.

[25] W. C. Tan, M. Zhang, H. Elmeleegy, and D. Srivastava, “Regal+ reverse
engineering spja queries,” Proceedings of the VLDB Endowment, vol. 11,
no. 12, pp. 1982–1985, 2018.

[26] C. Wang, A. Cheung, and R. Bodik, “Interactive query synthesis from
input-output examples,” in Proceedings of the ACM SIGMOD, 2017, pp.
1631–1634.

[27] D. M. L. Martins, “Reverse engineering database queries from examples:
State-of-the-art, challenges, and research opportunities,” Information
Systems, vol. 83, pp. 89–100, 2019.

[28] P. Barceló and M. Romero, “The complexity of reverse engineering
problems for conjunctive queries,” arXiv preprint arXiv:1606.01206,
2016.

[29] A. Fariha and A. Meliou, “Example-driven query intent discov-
ery: Abductive reasoning using semantic similarity,” arXiv preprint
arXiv:1906.10322, 2019.

[30] P. Orvalho, M. Terra-Neves, M. Ventura, R. Martins, and V. Manquinho,
“Squares: a sql synthesizer using query reverse engineering,” Proceed-
ings of the VLDB Endowment, vol. 13, no. 12, pp. 2853–2856, 2020.

[31] N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri, “Querying
knowledge graphs by example entity tuples,” IEEE Transactions on
Knowledge and Data Engineering, vol. 27, no. 10, pp. 2797–2811, 2015.

[32] J. Han, K. Zheng, A. Sun, S. Shang, and J.-R. Wen, “Discovering
neighborhood pattern queries by sample answers in knowledge base,” in
Proceedings of IEEE 32nd ICDE. IEEE, 2016, pp. 1014–1025.

[33] N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri, “Towards a query-
by-example system for knowledge graphs,” in Proceedings of workshop
on graph data management experiences and systems, 2014, pp. 1–6.

[34] E. Huang, L. Peng, L. Di Palma, A. Abdelkafi, A. Liu, and Y. Diao, “Op-
timization for active learning-based interactive database exploration,”
Proceedings of the VLDB Endowment, vol. 12, no. 1, pp. 71–84, 2018.

[35] K. Dimitriadou, O. Papaemmanouil, and Y. Diao, “Explore-by-example:
An automatic query steering framework for interactive data exploration,”
in Proceedings of the ACM SIGMOD, 2014, pp. 517–528.

[36] K.Dimitriadou, O.Papaemmanouil and Y.Diao, “Aide: an active learning-
based approach for interactive data exploration,” IEEE Transactions on
Knowledge and Data Engineering, vol. 28, no. 11, pp. 2842–2856, 2016.

[37] O. Bar El, T. Milo, and A. Somech, “Automatically generating data
exploration sessions using deep reinforcement learning,” in Proceedings
of the ACM SIGMOD, 2020, pp. 1527–1537.

[38] E. Huang, L. Palma, L. Cetinsoy, Y. Diao, and A. Liu, “Aideme:
An active learning based system for interactive exploration of large
datasets,” in Proceedings of the 33rd NIPS, 2019.

[39] X. Ge, X. Zhang, and P. K. Chrysanthis, “Exnav: An interactive big
data exploration framework for big unstructured data,” in Proceedings
of IEEE International Conference on Big Data. IEEE, 2020, pp. 503–
512.

[40] T. Milo and A. Somech, “Automating exploratory data analysis via
machine learning: An overview,” in Proceedings of the ACM SIGMOD,
2020, pp. 2617–2622.

[41] G. Vargas-Solar, M. Farokhnejad, and J. Espinosa-Oviedo, “Towards
human-in-the-loop based query rewriting for exploring datasets,” in
Proceedings of the Workshops of the EDBT/ICDT Joint Conference,
2021.

551

Authorized licensed use limited to: Cornell University Library. Downloaded on December 01,2023 at 03:27:50 UTC from IEEE Xplore. Restrictions apply.

