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Abstract Given a social network G, the Influence Maximization (IM) problem
aims to find a seed set S ⊆ G of k users. These users are advertised, or activated,
through marketing campaigns, with the hope that they will continue to influence
others in G (e.g., by spreading messages about a new book). The goal of IM is to
find the set S that achieves an optimal advertising effect or expected spread (e.g.,
make the largest number of users in G know about the book).
Existing IM solutions make extensive use of propagation models, such as Lin-
ear Threshold (LT) or the Independent Cascade (IC). These models define the
activation probability, or the chance that a user successfully gets activated by
his/her neighbors in G. Although these models are well-studied, they overlook
the fact that a user’s influence on others decreases with time. This can lead to an
over-estimation of activation probabilities, as well as the expected spread.
To address the drawbacks of LT and IC, we develop a new propagation model,
called Awareness Threshold (or AT), which considers the fact that a user’s influ-
ence decays with time. We further study the Scheduled Influence Maximization
(or SIM), to find out the set S of users to activate, as well as when they should
be activated. The SIM problem considers the time-decaying nature of influence
based on the AT model. We show that the problem is NP-hard, and we develop
three approximation solutions with accuracy guarantees. Extensive experiments
on real social networks show that (1) AT yields a more accurate estimation of ac-
tivation probability; and (2) Solutions to the SIM gives a better expected spread
than IM algorithms on the AT model.

1 Introduction
The Influence maximization (IM) problem, first proposed by Kempe et al. [22], has been
extensively studied in recent years (e.g., [27,18,37,26,36,9,28,29,6]). The IM plays a
fundamental role in viral marketing, a business promotion strategy that employs the
word-of-mouth effect, where the advertisement is based on customers spreading news
about something (e.g., a new electronic product) in social networks. The main goal of
IM is to find, given an influence graph G, a seed set S of k users such that the number
of users in G influenced by S (or expected spread) is maximized.

Figure 1 shows an influence graph, which is derived from the social relationship
among users. Each node in the graph represents a social network user. The value of
each edge is the influence probability, i.e., the chance that a user is affected or activated
by another one. Suppose that k = 2, and a seed set S = {A,B} is chosen by an IM
solution. A company, which wants to advertise a product, can promote it to A and B
(e.g., by giving them discounts), hoping that the expected spread (i.e., the number of
people influenced by A and B to buy its product) is maximal.
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Figure 1. Illustrating the IM problem

To enable IM, propagation models have been used to govern the flow of influence
in G. For instance, in Linear Threshold (LT) [23], a node v ∈ G is activated, if and
only if the sum of the influence probabilities induced by v’s active neighbors on v
exceed some threshold T . In Figure 1, suppose that T = 0.5, and A and B have been
previously activated (e.g., through a company’s marketing campaign). Node C then
receives an activation probability of 0.3+0.4=0.7 from A and B and gets activated. In
another well-studied model, Independent Cascade (IC), C is activated by A and B
with a probability of 1 − (1 − 0.3) × (1 − 0.4), or 0.58. Once C becomes active, we
can then use the propagation model again to activate C’s neighbors (i.e., E and F ).
Based on these models, efficient IM algorithms have been designed to find the best
set S of seed nodes that yield the highest expected spread (or the number of nodes
activated) [27,19,12,37,36].

The main problem of IC and LT is that they overlook the fact that the influence of
a user received from other nodes decreases with time. For example, in Figure 1, the in-
fluence probabilities on C due to A is not always 0.3 as claimed by IC and LT; rather, it
gradually drops as time goes by. OnceA has influencedC,A’s effect onC becomes less
profound, possibly because C’s memory or awareness of what A told him/her fades. In
our experiments performed on social networks (Twitter and Digg), the average activa-
tion probability of a node, which is a function of influence probabilities, drops quickly
with time. However, IC and LT do not consider this factor, and subsequently over-
estimate the expected spread significantly. This calls for a better propagation model.
Awareness Threshold. To deal with the issues of decaying influence probabilities, we
study the awareness threshold (or AT in short). This propagation model is inspired by
brand awareness, suggesting that a person u’s impression about the brand of a product
is affected by two factors: (1) build, which means u’s awareness about a product is
increased through exposure to more marketing activities [8,13]; and (2) decay, which
says that u’s awareness drops exponentially because he/she receives no further advert-
isement about the product [4,7,16,13]. The AT model integrates brand awareness into
the influence propagation process. Compared to IC and LT, AT attains a more accurate
estimation of spread in our experiments.
Influence Maximization under AT. We further study the IM problem under the AT
model. We show that this problem is NP-hard. We thus develop an efficient solution
with accuracy guarantees on the expected spread. We observe that the expected spread
can be further improved through a scheduled activation of seed nodes. To explain, in
the IM problem, the set S of k nodes is activated at the same time. However, it may
be wiser by activating these nodes at different time instants, taking into account their
brand awareness. Hence, in addition to deciding the seed nodes, we also want to de-
termine the exact time that they are activated. We term this variant of the IM problem
scheduled influence maximization (or SIM). Because SIM is NP-hard, we design a fast
approximate solution, called the Two-Phase Search (TPS). Under the TPS framework,
we study three scheduling policies, namely the Breadth First Schedule, the Depth First
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Table 1. Frequently used notations
Notation Description
wu,v the propagation probability defined on edge eu,v
N

(t)
v active in-degree neighbor set of user v at step t
θv activation threshold of user v
A

(t)
v awareness level of user v at step t

S/U seed set / scheduled seed set
k number of seeds
tu,v the time at which u attempts to activate v
t(v) the activation time of user v
t(u,v) time delay defined on the edge eu,v

σm(S)/σm(U) the expected spread of S/U under model m

Schedule, and the Bucket Schedule. Our results on real datasets show that SIM solutions
yield higher spread than their IM algorithms.

The rest of the paper is as follows. In Section 2, we discuss the research background.
Section 3 discusses the limitations of existing propagation models. In Section 4, we
describe the AT model. We then present our IM and SIM solutions for AT in Sections 5
and 6 respectively. We discuss the experiment results in Section 7, and related works in
Section 8. Section 9 concludes.

2 Preliminaries
2.1 Problem Definition
Given a directed graph G = {V,E,W}, V is the user set, and E is the set of edges
(e.g., the user influence relation). W is the set of probabilisties associated on E, where
for each eu,v ∈ E, the weight wu,v ∈ [0, 1] defined on the edge captures the probability
that u will influence v. Under a fixed budget k and a propagation model m (e.g. LT), the
IM problem looks for a seed set S consisting of no more than k users, whose expected
spread is the largest. Its definition is S∗ = argmaxS⊆V&|S|≤k{σm(S)}, where influ-
ence function σm(S) outputs the number of active users under model m, when each
node in S is activated. To address the IM problem, it is important to model how the
information is propagated, as will be shown next.
2.2 Propagation Models
There are two major classic propagation models, namely LT and IC model [23]. In both
models, information (or influence) spreads from the seed set to other nodes as discrete
time steps unfold.
LT model. Initially, all seed users are initialized as active and others stay inactive.
At each discrete time step, each inactive user will be activated if the weighted sum
contributed by her active neighbors is larger than a pre-defined threshold. Once a user
is activated, the user will stay active. The influence propagation terminates when no
more activations are possible.
IC model. Here the propagation process is also triggered by a set of active seed users.
At each time step, the newly-activated user (i.e., activated at the previous step), influ-
ences each of her inactive neighbors with a pre-defined probability. If the activation is
successful, then the inactive neighbor(s) will be activated and remain active in further
steps. The influence propagation terminates when no more users can be activated.
2.3 Activation Probability
Under a specific propagation model, at time step t, given an inactive user v and her
active neighbor set N (t)

v , activation probability of v is defined as the likelihood that v
can be activated by N (t)

v . Specifically, in LT and IC, the activation probability values of
v are denoted by

∑
u∈N(t)

v
wu,v and 1−

∏
u∈N(t)

v
(1− wu,v) respectively.
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Figure 2. Activation Probability

3 Limitations of IC and LT
As discussed in Section 2.3, IC and LT both adopt the following assumption: At time t,
for a given inactive user v and her active neighbor set N (t)

v , the activation probability
of v estimated by LT (IC) model is computed based on the influence weights associated
with his/her incoming edges..

However, as will be shown in the following case studies on real datasets, the as-
sumption is inconsistent with the reality. Suppose that each active neighbor u ∈ N (t)

v

always attempts to activate v. Then at step t, we define the average timespan, denoted
by τ , as τ = 1

|N(t)
v |

∑
u∈N(t)

v
(t− tu,v). This is the average time that v is reactivated by

u.
Next we conduct experiments to show the relationship between activation probabil-

ity and the average timespan τ .
Datasets. Two real-world datasets, Digg and Twitter [1], are used in this experiment.
Digg and Twitter are both social network applications, where Digg serves as a platform
for sharing and voting stories, and Twitter provides users with chances of sharing news,
photos, etc. The data from these two sources both consists of two parts, namely graph
and actionlog. The graph contains social links among users, and actionlog records vot-
ing/tweeting history of users in the form of <user id, action id, action time>, e.g. in
Twitter, <001, 002, 1250772872> means that user 001 re-tweeted an URL (numbered
as 002) on the date 1250772872 (Unix Timestamps). In [18], the propagation proced-
ure is defined by action follow. For instance, in Digg, if user u votes ”Cinderella”, and
later on her follower v also votes it, we consider the action of voting ”Cinderella” has
propagated from u to v. Table 2 shows the statistics.
Parameter Setting. We set the parameters of Twitter and Digg as follows:
(1) All probabilistic weights assigned on social links are learned from actionlog data by
the methods proposed in [17] and settings are referred to [18].
(2) Due to the sparsity of our datasets, not all action seeds, i.e. first voters of stories or
initial posters of tweets, are included in the social graph. Adopting the strategy in [18],
we take the users who first vote stories (post the tweets) among their friends as seeds.
Observations. To assess LT and IC model, we define the accumulated influence, de-
noted by γ, as respectively γ =

∑
wu,v and γ = 1 −

∏
(1 − wu,v). Then conditioned

on fixed γ and increasing τ , values of activation probability are shown in Fig. 2. Spe-
cifically, accumulated influence γ is fixed within an interval (x, x + 0.1], and for each
γ, average timespan τ is varied from 1 day to 5 days. In experiments, x is set from 0 to
0.9. Due to space constraints, only some representative results are shown here.

Observe that in both of Digg and Twitter, for each settled τ , with greater γ issued,
the activation probability reaches a higher level, which is consistent with the theoretical
result concluded by classic models (Section. 2.3). However, for each γ, the activation
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Table 2. Statistics of Datasets
Digg Twitter NetHEPT DBLP

# Nodes 71K 736K 15K 914K
# Edges 1.7M 36M 62K 6.6M

Avg. Degree 24 50 4.1 7.2
# Actionlogs 3M 2.8M - -

probability decreases with an increasing τ , which demonstrates that even if the accumu-
lated influence is fixed, activation probability decays when the average timespan grows,
however, this is not observed by classic models.

In particular, the activation probability can be overestimated by LT and IC models.
During a specific marketing campaign, these classic models will give an over-prediction
on the expected spread.

We next present the awareness threshold (AT) model, which addresses the drawback
of the LT and IC.

4 Awareness Threshold (AT)
Brand awareness is a term in the field of marketing science, which quantifies the extent
to which a brand is recognized by potential users, and is the primary goal of advertising.
Awareness level of user v at time t, denoted by A

(t)
v , reflects the likelihood of her

adoption behaviors [15,25]. By measuring user awareness level, business agents are
able to predict their marketing achievement, i.e., the number of users who will adopt
specific products.

The awareness has two dimensions, build and decay, namely as below.
Awareness Build. Viral marketing attempts to spread brand content over the whole
social network. When marketing campaign is launched in social networks, advertising
messages are broadcast through the social connection between user pairs. Some indi-
viduals are in the circles which are full of brand information, they are thus exposed to
advertising messages adequately. However, other social groups may only touch these
information to a limited extent. User awareness level grows as increasing copies of ad-
vertising are exposed to them. With higher awareness level in minds, users tend to adopt
the brand (or get activated in the setting of propagation models) [4,7].
Decay Effect. In the absence of further advertising exposures, customer awareness will
decline and eventually decay to negligible levels [4,7,16,13]. One common function to
model the decay effect is assuming the awareness will decrease exponentially w.r.t time.
Formally, for a specific user v, her awareness decay can be mathematically modeled as
follows:

A(t)
v = ∆A(t)

v + λv · A(t−1)
v , λv ∈ (0, 1) (1)

where A(t)
v and A(t−1)

v represents her awareness level at step t and t− 1, and ∆A(t)
v is

the awareness increment contributed by new advertising exposure.
Our Model. To incorporate the above two effects, we build our Awareness Threshold
(AT) model. Like IC and LT models, AT model simulates social network as a directed
graph G = {V,E,W, T, Λ}, and each user is in the status of active (product adopter)
or inactive. Meanwhile, different from IC and LT models, in AT model, there are two
additional sets (T ⊆ Z+ and Λ) assigned to the graphG. T records time delays attached
to social links. Since information diffusion progress among friend network will not be
finished in a moment, t(u,v) ∈ T implies that it takes t(u,v) time steps for messages to
propagate from u to v by the edge eu,v . Many researches [30,10] have been conducted
on how to calculate T . Moreover, for each user v, Λ contains her decay factor λv ∈
(0, 1).
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Figure 3. Example of SIM.
We denote t(v) as the time at which v gets activated. (If v stays inactive, t(v) =

+∞.) Let 1{·} denote an indicator function which returns 1 if its argument is true; 0,
otherwise. For example, 1{5=2} = 0 and 1{5=5} = 1. When time t ≥ 1, awareness
score of inactive user v, denoted by A(t)

v , is given by Eq. 1. Specifically, in AT model,
∆A

(t)
v is defined as follows:

∆A(t)
v =

∑
u∈N(t)

v

wu,v · 1{t(u)+t(u,v)=t}.

The term t(u) + t(u,v) = t indicates that v receives the influence forwarded by u at
t. The threshold of v, notated by θv , controls her activation condition, and v will be
activated only if her awareness score reaches θv .

Intuitively, the update of A(t)
v contains two parts: (1) ∆A(t)

v : the awareness incre-
ments brought by active neighbors of v; (2) λv · A(t−1)

v : the awareness remained from
last step.

Formally speaking, we define the awareness score of inactive user v at time t as
follows:

Definition 1 (Awareness Score) For the time t, awareness score of inactive user v ∈
V , i.e. A(t)

v , is defined as
λv ·A(t−1)

v +
∑

u∈N(t)
v

wu,v · 1{t(u)+t(u,v)=t} (2)
if t ≥ 1; and A(t)

v = 0 if t = 0.
In AT model, if all seeds (∀s ∈ S) are activated initially, starting from them, information
spreads as time goes in discrete steps:
(1) t = 0, ∀s ∈ S, s is active. ∀v ∈ V − S, v is inactive.
(2) t ≥ 1, the information is broadcast by every newly-activated user u, i.e. t(u) = t−1,
and propagated to each inactive neighbor v:
• At t(u) + t(u,v), v will capture an awareness increment wu,v .
• If A(t)

v ≥ θv , v is activated.
• Meanwhile, awareness score of every inactive individual j is weakened by her

decay factor λj , as formalized by Eq. 2.
(3) It terminates when no further activation is possible.

Fig. 3 illustrates this process with an example. Noting that in Fig. 3, the double
circle in a node indicates that the user is active, and the value next to an inactive user
represents her awareness score at a specific time.

5 Influence Maximization
In this section, we will first prove that under AT model, the NP-hardness of IM problem
still holds, and then provide solution towards IM problem based on the AT model.
Theorem 1 Under awareness threshold model, the influence maximization problem is
NP-hard.
Proof. In AT model, when there is no decay inside user awareness, i.e. for each user v,
λv = 1, then solving influence maximization problem is exactly equivalent to address-
ing it under LT model whose NP-hardness is proved in [23]. Thus AT-based influence
maximization can be proved as NP-hard.
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Algorithm 1: Sandwich Approach
Input: G, k, σAT , σL, σU

Output: seed set S
1 SL ← ALG(G,k, σL);
2 SU ← ALG(G,k, σU );
3 SAT ← ALG(G,k, σAT );
4 return argmaxS∈{SL,SU ,SAT } σAT (S);

We attempt to solve this NP-hard problem approximately. In the literature of IM,
if influence function σm(·) is monotone, i.e. σm(S) ≤ σm(T ) whenever S ⊆ T , and
submodular which means if S ⊆ T , then ∀v /∈ T σm(S ∪ {v}) − σm(S) ≥ σm(T ∪
{v}) − σm(T ), then the greedy algorithm [23] provides a result which approximates
the optimal value within a factor of (1− 1

e ) [33]. However, under AT model, influence
function σAT (·) is not submodular (refer to Example. 1). Inspired by [31], we exploit
the Sandwich Approximation technique to solve IM problem with solution-dependent
lower bound.
Example 1 Here a propagation example is taken to show the non-submodularity of
σAT . According to the social graph presented in Fig. 3, when seed set is assigned
as {A}, {A,C}, {A,B} and {A,B,C} respectively, then σAT ({A,B}) − σAT ({A}) <
σAT ({A,B,C}) − σAT ({A,C}). As mentioned above, influence function σAT (·) is
submodular iff ∀S ⊆ T and v /∈ T , the equation σAT (S ∪ v) − σAT (S) ≥ σAT (T ∪
v)− σAT (T ) holds. So σAT (·) is not submodular.

Let σL and σU be non-negative, monotone and submodular set functions defined
on user set V , i.e. σL : 2V → R≥0 and σU : 2V → R≥0, such that ∀S ⊆ V ,
σL(S) ≤ σAT (S) ≤ σU (S). The sandwich approach is described in Alg. 1, where
ALG represents a greedy-manner approximation algorithm.
Theorem 2 [31] The sandwich algorithm is able to generate a seed set Ssand such
that σAT (Ssand) is not lower than

max{σAT (SU )
σU (SU )

,
σL(S

opt)

σAT (Sopt)
} · (1− 1

e
) · σAT (Sopt)

where Sopt is the optimal solution.
In accordance with theorem. 2, sandwich approach approximates the optimal result
within a solution-dependent factor. Under this algorithmic framework, construction of
bound functions, namely σL and σU , is the next critical issue.

One instance of σL can be built by a modification on AT model, that replacing Eq. 2
with the equation below:

max
u∈N(t)

v
{wu,v · 1{t(u)+t(u,v)=t}}, (3)

where the decay factor is set as 0, and
∑

is replaced with max, i.e., at each step, only
the weight which contributes most is picked to update awareness score. Similarly, to
generate σU , we alter Eq. 2 to the equation:

A(t−1)
v +

∑
u∈N(t)

v

wu,v · 1{t(u)+t(u,v)=t}, (4)

where the decay factor is 1. Intuitively, by adoption of above modifications, for specified
seed set S, we have σL(S) ≤ σAT (S) ≤ σU (S).
Theorem 3 Influence function σL (σU ), which is built by modifying AT model in the
way that altering Eq. 2 to Eq. 3 (Eq. 4), is non-negative, monotone and submodular.
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Algorithm 2: Two-Phase Search
Input: G, k, σAT , σLT

Output: scheduled seed set U∗

1 Sg ← Selection(G, k, σLT );
2 U0 ← ∅ ;
3 foreach si ∈ Sg do
4 Add (si, 0) into U0

5 U∗ ← Schedule(G, σAT , U0) ;
6 return U∗;

Proof. Clearly, both σL and σU output non-negative numbers. We first prove the Mono-
tonicity and submodularity of σL.

Suppose the propagation model corresponding to σL is called ATL. Given a social
graph G, for each eu,v ∈ E, if wu,v < θv , eu,v is cut from G, then the generated graph
is denoted by g. Under ATL model, given a seed set S, ∀v ∈ G− S, v can be activated
by S inG iff there is a path from S to v in g. So an intuitive result is that for any seed set
T ⊆ S, σL(T ) ≤ σL(S), i.e σL is monotone. Consider the quantity σL(S∪v)−σL(S)
(v /∈ S), it is the number of nodes which are reachable from v but unreachable from S
in g. Obviously, if T ⊆ S, we have σL(S ∪ v)− σL(S) ≤ σL(T ∪ v)− σL(T ). So σL
is submodular.

Similarly, propagation model associated with σU is named by ATU . Conditioned
on ATU model, for any inactive user v, A(t)

v is actually equal to the sum of all wu,v
received. So for issued seed set S, its expected influence under ATU equals the value
under LT, i.e. σU (S) = σLT (S). Because of the monotonicity and submodularity of
σLT , it is trivial that σU is monotone and submodular.

Obviously, Alg. 1 is an approximation solution of IM problem, with the approximate
ratio of max{σAT (SU )

σU (SU ) ,
σL(Sopt)
σAT (Sopt)} · (1−

1
e ) · σAT (S

opt).

6 Scheduled Influence Maximization
Viral marketing is to maximize brand awareness or product adoption over social net-
works, where the level of ‘brand awareness or product adoption’ is equivalent as user
activation by influence propagation study. However, we observed that In AT model, the
reach of information is also highly related to the schedule of seeds, i.e. the time step
at which each seed is initially activated. Intuitively, the schedule of activating seeds is
also essential in Viral marketing. Motivated by this issue, Sec. 6 proposed a new IM
problem: Scheduled Influence Maximization (SIM) problem and addressed it with an
approximation algorithm.

6.1 Scheduled Influence Maximization
Let S = {si|1 ≤ i ≤ k} ⊆ V be a k-element seed set, and Γ = {ti|1 ≤ i ≤ k}(ti ∈
N) be the corresponding schedule set, i.e. during a specific marketing campaign, each
seed si is artificially activated at ti. A scheduled seed set U = {(si, ti)|si ∈ S, ti ∈
Γ, 1 ≤ i ≤ k} contains every selected seed and its activation time. In this paper, taking
a scheduled seed set U as input, influence function σAT (U) outputs the number of act-
ive users finally generated. Under AT model, formal definition of Scheduled Influence
Maximization (SIM) problem is given as follows.
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Definition 2 (SIM Problem) Given a directed social graph G = {V,E,W, T, Λ}, and
an integer budget k ≤ |V |, search a scheduled seed set U , where |U | ≤ k, that maxim-
izes σAT (U).
Intuitively, for each tuple (si, ti) ∈ U , if ti = 0, SIM is trivially reduced to IM problem.
As proved by Theorem. 4, the hardness result on SIM still holds.
Theorem 4 SIM Problem under AT model is NP-hard.
Proof. In AT model, if ∀v ∈ V , decay factor λv = 1. Then for any possible seed user
set, arranging their activation time cannot change final output. So scheduled influence
maximization problem is actually identical to the conventional influence maximization
problem. As proved before, under AT model, influence maximization problem is NP-
hard. Thus addressing scheduled influence maximization is also NP-hard.

6.2 Two-Phase Search
An intuitive observation is that, compared to IM problem, the search space of SIM is
enlarged dramatically. To reduce the time cost of searching solution result, we design
the Two-Phase Search (TPS) algorithm which divides the result exploration procedure
into two phases, namely seed selection and seed schedule. The algorithmic details are
described in Alg. 2. To be specific, seed set Sg is obtained by running greedy-manner
approximation approach (Selection), like IMM [36], and their activation steps are man-
aged by the Schedule module. In this work, three schedule algorithms, Breadth First
Schedule (BFS), Depth First Schedule (DFS), and Bucket Schedule (BS) are proposed
to implement the module.

Algorithm 3: Breadth First Schedule
Input: G, σAt, U
Output: scheduled seed set U

1 loop← true ;
2 while loop do
3 loop← false ;
4 foreach (si, ti) ∈ U do
5 ϕ← σAT (U), ti ← ti + 1 ;
6 if σAT (U) ≤ ϕ then
7 ti ← ti − 1;
8 else
9 loop← true;

10 return U ;

BFS & DFS. As detailed in Alg. 3 and 4, taking U0 (as mentioned in Alg. 2, in which
every seed is activated at step 0) as input, BFS and DFS operate the schedule by defer-
ring activation time heuristically. Specifically, in both of these two methods, seed-step
pairs (si, ti) are picked in a round-robin fashion for deferment test, and each test will
increase ti by one step if expected spread is raised accordingly.

The difference is that as shown in BFS (Alg. 3 : line 4 to 9), when one deferment test
on (si, ti) is finished, the next seed-step pair will be chosen. Differently, for specified
tuple (si, ti), DFS keeps deferring ti, namely setting ti ← ti+1, until no improvement
on σAT (U) is achieved, then next tuple will be loaded, shown in Alg. 4 : line 3 to 11.
Both of these two methods terminate if no further promotion on σAT (U) is possible.
BS. Another heuristic is that assuming U+ is generated from U0 by a decent schedule,
and ∀(si, ti) ∈ U+, ti ∈ [0, B], where interval [0, B] is called a bucket. BS targets to
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Algorithm 4: Depth First Schedule
Input: G, σAT , U
Output: scheduled seed set U

1 loop← true ;
2 while loop do
3 foreach (si, ti) ∈ U do
4 loop← true ;
5 while loop do
6 loop← false ;
7 ϕ← σAT (U), ti ← ti + 1 ;
8 if σAT (U) ≤ ϕ then
9 ti ← ti − 1;

10 else
11 loop← true;
12 return U ;

Algorithm 5: Bucket Schedule
Input: G, σAT , U,B
Output: scheduled seed set U

1 loop← true ;
2 while loop do
3 loop← false ;
4 ϕ← σAT (U) ;
5 foreach (si, ti) ∈ U do
6 ti ← argmaxti∈[0,B]{σAt(U)} ;
7 if σAT (U) > ϕ then
8 loop← true;
9 return U ;

return a result which approaches to U+ as much as possible (pseudo-code is listed in
Alg. 5.). Similarly, BS also schedules seeds in rotation. When pair (si, ti) is picked,
ti will be assigned as the value which maximizes σAT (U) among all integer elements
in [0, B]. If no spread improvement is achieved in the whole round, schedule iteration
exits and final result is returned.

6.3 Theoretical Analysis
To evaluate the performance of U∗ outputted by TPS, we first give Lemma. 1 by which
Theorem. 5 next guarantees that TPS achieves an approximation ratio of α(1 − 1/e),
where α = σAT (U

0)/σLT (S
g).

Lemma 1 Given arbitrary scheduled seed set U and the corresponding seed set S, i.e.
|U | = |S| and ∀(si, ti) ∈ U , si ∈ S, the expected spread of U is bounded by σLT (S),
formally σAT (U) ≤ σLT (S).
Proof. Under AT model, for an issued scheduled seed setU , its expected spread σAT (U)
is computed by counting active users finally generated. An observation is that, if each
decay factor λv = 1, since awareness score A(t)

v never declines over time, the expec-
ted spread of U reaches its peak value, formally σAT (U) ≤ σ

(λ=1)
AT (U). Meanwhile,

conditioned on λv = 1, an intuitive result is that for specified seed set, its expected
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spread σ
(λ=1)
AT is free of seeds schedule. Suppose U0 is the scheduled seed set that

|U0| = |U |, and ∀(si, ti) ∈ U, (si, 0) ∈ U0. Thus we have, σ(λ=1)
AT (U) = σ

(λ=1)
AT (U0).

Moreover, with cutting of decay factor, user awareness score equals sum of the probab-
ilistic weights received, which is actually equivalent to the pattern defined in LT model.
So σ(λ=1)

AT (U0) = σLT (S). Based on the above analysis, we have σAT (U) ≤ σLT (S).
Thus the Lemma is proved.
Theorem 5 Suppose α = σAT (U

0)/σLT (S
g). Alg. 2 approximates the optimum to

within a factor of α(1− 1/e). Formally σAT (U∗) ≥ α(1− 1/e)σAT (U
opt).

Proof. Let S′ = {si|(si, ti) ∈ Uopt}. For the submodularity, monotonicity and non-
negativity of σLT [23], thus

σLT (S
g) ≥ (1− 1

e
)σLT (S

opt) ≥ (1− 1

e
)σLT (S

′)

By Lemma. 1, we have σLT (S′) ≥ σAT (U
opt), thus σLT (Sg) ≥ (1 − 1

e )σAT (U
opt).

Since σLT (Sg) = σAT (U0)
α , and σAT (U

∗) ≥ σAT (U
0). Therefore, we can derive

σAT (U
∗) ≥ α(1− 1

e )σAT (U
opt).

7 Experiments
In this paper, we have tested the proposed solution of the SIM problem based on AT
model. The general experiments are divided into two parts, the spread prediction and
spread promotion (For space limitation, spread computation details are mentioned in our
full technical report [2]). We have conducted intensive experiments on public datasets
to demonstrate the effectiveness and efficiency of our solution.
7.1 Dataset
In addition to the dataset utilized in Section. 3, other real social graphs [3] are also used
in our experimental evaluation, and their details are illustrated in Table. 2. All the graphs
are constructed with directed edges and commonly-used for influence maximization
research [20]. Specifically, NetHEPT and DBLP contains co-author(s) data in High
Energy Physics (Theory) section of arXiv and DBLP Computer Science Bibliography
respectively. Since the datasets of NetHEPT and DBLP do not include actionlogs, which
means actual propagation size is unavailable, Experiment. 7.3 is only conducted on
Digg and Twitter. For other experiments, all 4 datasets are used.
7.2 Parameter Setting and Implementation
All the weights associated on social edges are learned from user historical data by the
method mentioned in Section 3. Specifically, for NetHEPT and DBLP, the weights are
provided by the author of [20]. Refer to [30], for each edge eu,v , the attached time
delay t(u,v) follows a Poisson distribution where the mean is randomly sampled from
{1, 2, · · · , 20}. In reality, decay factor varies among different individuals. The best way
to decide each decay factor is to learn from the historical data of each user. Unfortu-
nately we do not have access to sufficient such real data sets for the purpose of exper-
iments. Thus, we use synthesized setting. For each user v, her decay factor λv is set
as a randomly-sampled value from [1 − θv, 1), which means lower threshold is more
likely to generate a higher decay factor. Since easily-activated individuals usually show
more interest on the propagated information, we thus assign them a slower speed of
awareness-decay. For the computation of σAT (U) and σm(S), we adopt the Monte
Carlo approach [23], instead of using a fixed number of samples, we determine the
sample number dynamically, which is detailed in our technical report.
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Figure 4. Spread Estimation

7.3 Evaluation Results
The evaluation can be generally grouped into two parts. In the first part, we measured
the spread estimation of propagation models (including classic models, and AT model
(Section. 7.3)). Second, we study the improvement of influence in the social network,
and the efficiency of each scheduling method (Section. 7.3 and 7.3). All experiments
are performed on an Ubuntu-installed machine equipped with an Intel Xeon(R) CPU
E5-1620 v2 @ 3.70GHz ×8 and 16G memory. Results are obtained by running each
experiment 10 times and taking the average.
Model Evaluation Since the aforementioned decay effect is not adopted in model
construction, classic propagation models usually over-estimates user activation probab-
ility, which eventually causes over-prediction in influence spread. This section targets
to evaluate propagation models in the way that comparing the real influence spread with
the spread values estimated by models. By observing the estimation gap, the effective-
ness of propagation models can be evaluated. Experimentally, for specified seed set S,
its expected spread is compared with the actual spread. For ground truth, the seeds of
each action are set according to Section 3, and actual spread is the number of users who
performed the same action, namely propagation size.

As shown in Fig. 4, in contrast to actual propagation size, the expected spread given
by IC and LT models severely suffers from over-prediction. In Digg, the model-caused
extra prediction reaches to 60% of the actual spread. While in Twitter, expected spread
even exceeds the actual value by numerous times.

In AT model, activation steps of seeds are set according to their action timestamps.
Specifically, timestamp of the earliest action is recorded as t = 0, then t = 1 denotes
the next timestamp. (in our dataset, there are 12 hours between two timestamps.) As
demonstrated by empirical results, expected spread given by AT model approaches the
actual value closer. Since AT model captures decay nature inside user awareness, when
it is utilized for spread estimation purpose, over-prediction problem can be eased much.
Spread Promotion As addressed above, decent schedule on seeds (activation time) can
contribute to enlarge influence spread. Our second set of experiments compare spread
promotion created by different schedule algorithms. To measure the spread promotion,
spread increase rate is defined first. Formally, with fixed budget issued, spread increase
rate= σAT (U)−σAT (S)

σAT (S) , where U denotes scheduled seed set returned by TPS (Alg. 2),
and S represents seed set outputted by non-scheduling sandwich approach (Alg. 1).
Fig. 5(a) to (d) report spread increase rate achieved, varying k from 5 to 30. Each line
is labeled by the schedule algorithm invoked in TPS.

Overall, when B = 30, BS, notated as BSB=30, outperforms BFS and DFS over all
budget values. Moreover, under k = 5, invocation of BSB=30 raises spread increase
rate to its maximal value. In NetHEPT, the maximum reaches to 33%, while in DBLP, it
is 18%. Another observation is that as growing budget issued, spread increase rate tends
to go downward. Experiment results show that when incremental seeds are allocated
on a social graph, σAT (S) increases faster than σAT (U) − σAT (S) which denotes
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Figure 5. Spread Increase Rate & Efficiency Comparison

the additional spread created by TPS. Hence issuing k incrementally causes the rate
decreases.

We are also interested in investigating how assignment of B affects performance
of BS. Theoretically, with a greater B inputted, BS explores solutions in a larger search
space, so better results may be returned. In practice, as shown in Fig. 5(e) to (h), a bigger
B generally boosts spread increase rate, but merely in a limited extent. By contrast,
bucket size addition results in much extra computation time (discussed in Section. 7.3).
Efficiency Analysis This section evaluates computation cost of running schedule al-
gorithms. As a function of seed number, runtime of schedule algorithms is reported
in Fig. 5 (i) to (l). It can be seen that BFS and DFS scale well with respect to k. For
instance, in the largest dataset Twitter and DBLP, DFS only takes around 40 seconds
to schedule 30 seeds, and BFS performs equally. Comparatively, as seeds are incre-
mentally imported, BS requires significantly more time to handle the schedule task,
especially when k is greater than 20. In addition to seed number, if bucket size B is
enlarged, BS also heavily suffers from consequent inefficiency issue. Fig. 5(i) and (l)
show that conditioned on k = 30, time cost ofBS20 is even tripled whenB is increased
to 30.

8 Related Work
8.1 Influence Propagation Model
Classic models, LT and IC model have been introduced in Sec. 2. Apart from these
two models, there are also extensive research on other models simulating the influence
propagation.

Time-dependent Model In Latency Aware Independent Cascade (LAIC) model [30],
for each piece of propagation (e.g. at time ta user u sends a specific message to her
friend v, then at tb, v receives it), the time delay, i.e. tb − ta, is expressed as a delay
weight associated with each social link. Similarly, this time delay is also incorporated
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by Independent Cascade model with Meeting events (IC-M) [10]. In the context, at each
time step newly-activated users perform activation on their inactive neighbors by some
pre-determined probabilities. If it fails to occur, active users will continue activation
attempt in subsequent steps until success. The time span from initial attempt to the final
reflects this time delay. Other time-dependent models like Delayed Linear Threshold
and Delayed Independent Cascade [32] are constructed in similar manners. All these
models integrate the aforementioned time delay into influence propagation mechanism,
so they can track information propagation progress over time. But the decay effect in-
side user awareness is omitted, which means the fundamental problem in classic models
is unsolved.
Decay Model Motivated by the intuition that fresh news exhibits more attractiveness
than out-of-date information, Independent Cascade with Novelty Decay (ICND) [14] is
proposed to model information diffusion conditioned on that novelty inside the diffused
message decays as its exposure frequency increasing. For instance, the initial weight
assigned on edge eu,v isw, where v is inactive. If n neighbors (except u) have attempted
to activated v (and failed), i.e. a specific message M has been exposed to v n times, then
w will keep decreasing as n grows, which indicates that M becomes less attractive to v.
In ICND,edge weights decay is dependent on the times of information exposure, which
are actually related to the network structure and diffusion trace. So the time-dependent
nature of decay effect is not revealed.

Other models like Time-varying Independent Cascade model (TV-IC) [34] and Cas-
cade Model with Diffusion Decay (CMDD) [38] all build edge weights as time-decay
functions, i.e. as time lapse, the weights vary non-increasingly. These models are con-
structed under the hypothesis that information freshness decays as a function of time,
i.e. it becomes less attractive over time. For instance, at step t, the weight associated
on eu,v is w, at subsequent steps, even if the propagated message M has never been
exposed to v, value of w still decreases. However, above hypothesis is challenged by
experimental results given in [35], it turns out that edge weights diminishing only occurs
if messages are not fresh to the social circles. So back to the last instance, weight of eu,v
should keep invariant if v has not touched M. Previous time-decay models only simply
relate influence relationship decay and time lapse together, and omit the rationale be-
hind this decay effect, which causes that the fundamental defined by these models is
inconsistent with influence propagation nature. Thus existing decay mechanisms are
unable to depict propagation dynamics.

8.2 Scalable Influence Maximization
By exploiting submodularity of influence functions, Leskovec et al. propose CELF
technique [27] which accelerates the classic Greedy dramatically without compromise
on accuracy guarantee. Then an improved version, called CELF++ [19], increment-
ally contributes to efficiency enhancement. However, running of CELF (and CELF++)
triggers thousands of sampling operation, which causes heavy time cost in practice.
Then several algorithms aim to solve IM heuristically, e.g. PMIA [11], IRIE [24] and
Simpath [20]. Subsequently, the technique breakthrough, namely reverse reachable sub-
graph sampling, is achieved by Borgs et al., theoretically, the novel approach RIS [6] is
able to provide elegant performance guarantee in both of efficiency and effectiveness.
Inspired by RIS, Tang et al. develop TIM [37] and IMM [36]. Also, there are many
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problems motivated by IM problem. Competitive Influence Maximization (CIM) [5],
a widely discussed problem, considers multiple agents attempting to maximize their
influence over the social network competitively. Another instance is Influence Block-
ing Maximization (IBM) [21] which targets to minimize the influence triggered by the
competing seeds.

However, all these problems assume that seeds are activated initially, and seeds
scheduling has not been well studied.

9 Conclusion
In this paper, based on the decaying observation and verified experiments, we propose a
new model Awareness Threshold (AT). This model enables a more accurate estimation
of the propagation process. Conditioned on AT model, a tailored algorithm is intro-
duced to address influence maximization (IM) problem approximately. Further, under
the AT model, selection and schedule of seeds collaboratively impact final information
spread. Structured on this investigation, scheduled influence maximization (SIM) prob-
lem is proposed next. To tackle this challenge, Two-Phase Search method is developed
to approximate the optimal value with a lower bound guarantee. Finally, the approach
utility is evaluated by intensive experiments.
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