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ABSTRACT
A variety of systems have been proposed to assist users in detecting
machine learning (ML) fairness issues. These systems approach
bias reduction from a number of perspectives, including recom-
mender systems, exploratory tools, and dashboards. In this paper,
we seek to inform the design of these systems by examining how
individuals make sense of fairness issues as they use different de-
biasing affordances. In particular, we consider the tension between
de-biasing recommendations which are quick but may lack nuance
and "what-if" style exploration which is time consuming but may
lead to deeper understanding and transferable insights. Using logs,
think-aloud data, and semi-structured interviews we find that ex-
ploratory systems promote a rich pattern of hypothesis generation
and testing, while recommendations deliver quick answers which
satisfy participants at the cost of reduced information exposure. We
highlight design requirements and trade-offs in the design of ML
fairness systems to promote accurate and explainable assessments.

CCS CONCEPTS
• Human-centered computing → User models; • Computing
methodologies → Machine learning algorithms.
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1 INTRODUCTION
Biases are silently encoded into decision-making processes, poten-
tially affecting awide variety of domains including human resources
[25], health care [1, 16] and policy [42, 68]. With increasing deploy-
ment of machine learning (ML) models in real-world tasks, societal
biases remain pervasive but now may be masked by a veneer of
computation. While ML models can reduce costs and improve the
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accuracy of decision-making, they are only as effective as their
training data and model-builders. Due to these risks, researchers
now investigate the social impact of ML biases empirically [7]
and develop metrics and algorithms to mitigate bias [29, 37]. Re-
cent research has synthesized these streams of work, leading to
novel tools for interactively investigating bias issues in ML systems
[9, 14, 24, 34, 76].

Such de-biasing systems generally offer affordances for exploring
bias issues across different metrics. Many include recommendations
as a way to bootstrap the process. Some are almost entirely auto-
mated. For example, IBM AIF 360 [9] offers recommendations - the
user simply provides a model and dataset as inputs, and it will iden-
tify biases using visualizations. Recommendations deliver answers
quickly, but they risk reducing transparency and accountability.
Additionally, recommendation may lead to overconfidence from
inexperienced analysts and mask subtle, more pernicious biases.
Recent work has exposed how exploratory interfaces may offer a
different value proposition [17, 76]. Instead of delivering instant
results, users must explore to develop an understanding of possible
issues. While this may grant a deeper understanding of bias that
can be better transferred to future tasks, it requires more effort on
the part of the analyst and may require more expertise.

It is critical for the ML community to develop effective, usable
design patterns for interactive de-biasing. Moreover, a number
of projects [13, 48, 60] identify how misalignment between folk
definitions of fairness and existing statistical definitions can cause
conflict, necessitating careful design practice to encourage proper
reasoning about fairness that is well grounded in best practices. Yet,
at present we lack knowledge about how the design of interactive
de-biasing tools shapes how users reason. In order to develop more
effective tools, it is crucial to understand the trade-offs between
salient design features like recommendation and exploration in
de-biasing.

In this paper, we investigate how various interactive de-biasing
tool affordances shape the way that individuals make sense of fair-
ness issues in data. In particular, we focus on how individuals make
use of machine recommendations and open exploratory interfaces.
Through a think-aloud investigation, surveys, and semi-structured
interviews we expose how process-level differences that result from
these tool affordances can have dramatic downstream impacts on
both outcomes and user experience.

Our work makes the following contributions:

• Through an analysis of existing data, we identify design
issues in exploratory and recommender de-biasing systems.

• Using a think-aloud methodology, we observe participants
using three different de-biasing tools in order to understand
how interactive affordances shape their understanding of
bias.
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• We synthesize the results of our think-aloud and highlight
specific design considerations for the ML fairness commu-
nity.

Through our investigation we find that while exploration leads to
better outcomes due to its encouragement of iteration and branch-
ing investigations, it is often unsatisfying for users and has signif-
icant barriers to entry. On the other hand, we show that recom-
mendations, while gratifying for users, risk misinterpretation and
can exacerbate choice overload issues when working with complex
data.

2 RELATEDWORK
The machine learning pipeline as a whole is filled with many chal-
lenges for researchers [40, 51, 53, 62] spanning from proposing
powerful algorithms and models [65, 67] to interface design [28, 46].
More recently, ML has entered a variety of domains including mar-
keting [22, 36], ethics [7], law, and policy [42, 68]. With the expan-
sion of ML, interest has risen in how models might encode societal
biases which then propagate forwards into decisions that have real
world implications [33, 66], perpetuating societal injustices [59].
As a result, increasing effort has been directed towards designing
ML fairness assessment systems. These efforts involve deploying
bias detection algorithms and prototyping effective interfaces for
de-biasing, necessitating cross-disciplinary efforts among technical
fields [38]. In the following sections, we first review the theoretical
basis for designing de-biasing tools, and then step through a variety
of tools and techniques that have emerged.

2.1 Machine Learning Fairness
A wide variety of projects have proposed statistical definitions to
quantify unfairness in data and ML models, with corresponding
algorithms to mitigate issues [2, 10, 15, 21, 29, 37]. These metrics
have different targets and application scenarios, and, unfortunately,
can often be mutually exclusive [44]. Moreover, [33] benchmarked
existing fairness-aware ML algorithms and proved that existing
solutions correlate with each other and are sensitive to dataset
composition. More recently, causality has been introduced as a
means to generalize unfairness detection and add robustness [43,
52, 80].

The HCI community has also systematically investigated fair-
ness from many different perspectives. Projects have identified the
impact of machine learning fairness in different sectors of the soci-
ety [7, 12, 35, 61, 74]. For example, Hamid et al. [35] and Schlesinger
et al. [61] researched racial and gender bias in ML systems. Per-
ceptions of bias also play a role in propagating negative effects.
[74] highlighted how unfairness builds mistrust. Recently, HCI re-
searchers have conducted empirical investigations [13, 38, 48, 60].
Accountability is also a factor in ongoing work [49, 56, 78].

2.2 Sensemaking
Sensemaking can be defined as the process that humans employ
to construct meaning from raw data [57, 71]. Many fields, such as
visualization [19], information retrieval [6] and communication
[72] consider aspects of sensemaking. In foundational work, Russel
et al.[57] examined the process a team used to assemble educational
materials, identifying how pieces of information are fit into larger

schema. Pirolli and Card [55] extend this work, highlighting how
individuals forage for data and develop schemata in an iterative
process. In their notional model, iterative refinement emphasizes
how understanding grows as part of a process and is not instan-
taneous. Recent projects have explored how to mitigate cognitive
biases [58, 69] and promote a more complete understanding of ML
[30, 75].

2.3 Systems for ML Fairness
A variety of articles [23, 25, 61] have highlighted the importance
of de-biasing systems in improving ML fairness. We identify two
parallel threads in such systems:

Recommendations: Recommender systems and toolkits have
been developed to direct users towards mitigating bias in their ML
pipelines. IBM AI Fairness 360 (AIF) [8] automatically detects un-
fairness issues and fixes the biases using integrated metrics and
mitigation algorithms. Similarly, Fairlearn [14] provides automatic
solutions for biased inputs, particularly for binary classification
and regression tasks. Commercial platforms like Microsoft Azure
integrate tools like Fairlearn into their offerings 1. [34] is a human-
in-loop system enabling practitioners to view automatically gener-
ated visualizations and correct models for bias. ML-fairness-gym
[24, 31, 39, 50] contains a set of simple simulations that explore the
potential long-run impacts of deploying machine learning-based
decision systems in social environments, and maintain a learning
agent that interacts with an environment.

Exploration: While many of the aforementioned toolkits can
be used in an exploratory capacity, exploratory analytics is not
their specific aim. Exploratory data analytics tools [63] often have
affordances for highlighting trends, but ultimately give users a
sandbox to explore. Recommendations may assist, at the risk of
biases such as anchoring [69]. For example, one system [76] aug-
ments an exploratory interface with a causal view to help reason
about fairness. Exploratory tools have seen use in other areas, in-
cluding discovering classification errors [20] and preventing false
discoveries [45].

While recommendations help to quickly reach actionable con-
clusions, they bring with them the risk of injecting unrealistic
assumptions silently [26], lacking necessary accountability [78],
and causing cognitive biases or misconceptions [18, 68, 70]. [77]
highlight a few reasons why human analysts may mistrust recom-
mendation systems, assuming they know they are using one at
all [32]. When they are given the power to tune a recommenda-
tion, analysts had higher confidence in it [27]. Exploratory tools
like Silva [76] and AnchorViz [20] might help to bridge this gap.
Though there are a number of recent UX-focused studies of ML
systems[3, 4, 20, 46, 53], to the best of our knowledge, there is no
systematic study on how the design of systems affects the sense-
making of analysts engaged in de-biasing.

3 PRELIMINARY ANALYSIS
In order to understand how the design of interactive data de-biasing
tools shapes their use, we first conducted a preliminary analysis

1https://docs.microsoft.com/en-us/azure/machine-learning/concept-fairness-ml
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using existing data generated during the evaluation of an interac-
tive bias exploration tool. Our goal in this portion of our work was
to identify seed candidates to later explore through more in-depth
think-aloud studies. Given the degree to which task, dataset, and
user group can affect the outcome of laboratory studies of interac-
tive data tools, we analyze the activities and performance of users
in a prior comparative study in order to find key breakpoints, per-
formance differences, areas of contention, and overarching themes
that can help to inform our main investigation.

The subject of our preliminary investigation is an interactive
de-biasing tool, Silva [76], that uses a view of causal relationships
among data variables in order to help users perform exploratory
analyses of bias issues in their datasets. Silva has four major com-
ponents: a Dataset Panel (where users select attributes and toggle
attribute sensitivity), a Causal Graph view (visualizing causal re-
lationships among attributes), a Table Group (displaying info on
training data and user-formed groups), and a Fairness Dashboard
(bar charts showing fairness values across models, metrics, and
user-defined groups). In prior work on the tool, the authors of Silva
found that the tool helped users to diagnose issues in datasets as
well as or better than IBM AI 360 (AIF)[8]. Further, they found that
though there were task-dependent changes, skill wasn’t a factor
[76].

In our analysis, we explore anonymized event log and unpub-
lished performance data for further study. The event log dataset
the authors collected contains information on participants’ views
of socially biased attributes before and after using both Silva and
AIF [8], their activities when exploring Silva, and the time each
participant spent using different components of Silva. 30 partici-
pants were asked to point out socially biased and socially acceptable
attributes in two datasets before and after using either tools. Follow-
ing conclusion of the study, participants completed a post-survey,
answering questions concerning their experiences using the tool.
We focus on three main subjects in our investigation:
Q1. How do both tools (Silva and AIF) shape participants’ ideas,
hypotheses, and goals during sessions?
Q2. How did participants make use of the de-biasing tools, and how
might their use have been shaped by tool affordances?
Q3. How did the tools assist participants in reasoning about fairness
in their datasets?

3.1 Shifts in Understanding During Tool use
One trend in the user performance dataset for [76] suggests that a
fair number of participants re-thought their understanding of the
dataset, exhibiting shifts towards different focal attributes (and in
many cases arriving on the ground truth answers). Evidence for
this emerged in self-reported responses in pre- and post-surveys.
This suggests that the de-biasing tools, though their use, shaped
participants’ views. Not only did they accomplish the goal of iden-
tifying sensitive attributes, but their understanding of the space of
data might also have changed. In order to gain some insight on this
finding, we re-processed this dataset. We selected for participants
who reported different views on attributes before and after using
either tool.

Among those who changed their views after using the assigned
de-biasing tools, we counted the number of ground truth biases
they correctly identified in their post-survey through use of the
systems. In general, both tools led participants to change their

views: 14 participants using AIF 360 and 15 participants using
Silva exhibited shifts in their understanding of sensitive attributes.
However, aligning with what the authors of [76] found, among
those who changed their opinions, there remained a significant
difference (t(58)=2.2841 p = .026 ) in the number of correct answers
participants finally got between Silva’s exploratory tool (M: 0.53,
Std: 0.78) and AIF (M: 0.07, Std: 0.78). This provides some initial
evidence that the interactive affordances in particular provided
some kind of "secret ingredient" for improving performance (and
might be informed by further investigation). Among the group of
users who showed shifts in their understanding, we also could not
detect differences based on self-reported skill, aligning with the
prior analysis.

3.2 Mining Interaction Logs
We then analyzed interface activity logs for participants using the
Silva exploratory de-biasing tool [76]. These logs took the form
of dwell times on specific components in the tool as well as usage
counts. Event log series did not prove complete enough for full
analysis. In examining the log data, we sought to identify which
interface elements most directly related to changes in participant
pre-/post-survey outcomes and total performance. These elements
ought to be key areas of interest in further think-aloud study, as they
hint at being broader leverage points for potential improvements
in the de-biasing process.

Silva participants made use of all of the different affordances
provided in the tool. As expected, the most novel feature of the tool,
the causal graph view, received the most dwell time of all of the
tools (M: 394.5s, Std: 797.9s, total session: 1200s) and the highest
number of interaction events (M:11.0:, Std: 5.69) compared to the
mean total operations performed by participants (M: 13, Std: 6.20
) in the case of the simpler Berkeley dataset. The more complex
adult dataset involved even more time spent interacting with causal
graph (M: 464.2, Std: 504.0) and a concordant increase in the number
of interaction operation (M: 34.45, Std: 35.23). While there was too
much variability in the time data to observe a difference between
datasets, we did observe a significant increase in causal graph inter-
face actions between the simple and complex dataset (t(58) = 3.5991,
p < 0.001). This emphasizes the role that the causal view played
in participants’ understanding of the data, as mediated by the tool.
Though, ironically, further controlled study would be needed to
fully demonstrate a causal relationship between data complexity
and causal graph use. This is a strong motivator for examining the
role that the interactive causal graph plays in a think-aloud study.

One other key feature of the Silva tool was the ability to group
attributes, save them, and examine how metrics changed across
models. For example, the participants may have thought that cer-
tain attributes or data might be more biased. By grouping points,
they could test this assumption. Taking this idea that grouping of
points is a potential signal for inference and hypothesis testing,
we examined the creation of groups in the Silva user study logs.
We found that in the case where data were complex (adult dataset,
M: 5.4, Std: 4.92), Silva users created significantly more groups
compared to the simpler Berkeley dataset (M: 2.0, Std: 0.71, t(58) =
3.7463, p < .001). However, it is hard to tell whether the creation
of groups resulted in improved outcomes for participants. A think-
aloud study would allow us to test our operating assumption that
group making matches up to participant hypothesis generation and
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testing, and to gather suggestive evidence about the efficacy of in-
teractive grouping tools in de-biasing. We have provided additional
event log summary statistics in the Appendix of this document.

3.3 Hypothesis Testing and Inference
Finally, we re-examine quotes and self-report feedback provided by
participants in the preliminary dataset. While in the initial work the
authors discussed general themes in findings, in this investigation
we focused on the kinds of reasoning that participants conducted
during their investigation. We operate primarily on inference, as
this was not a specific goal of the survey instrument. Inferring from
quotes, we can find a few suggestions to investigate further.

One overarching theme in the qualitative data is that most partic-
ipants reported that the causal graph was useful to them in making
sense of the relationships between sensitive attributes. One reports,
“the causal graph helped me to see that there was not a direct depen-
dency between sex and admisson [sic]," in exploring the Berkeley
dataset. This is suggestive evidence that the participant was testing
a hypothesis that they had developed using their own intuitions and
expertise. There was confusion as well, with one participant report-
ing feelings of being overwhelmed by the abundant and sometimes
inconsistent information shown. They reported, “it was tough com-
paring across so many groups and to my surprise different metrics
are changing in different directions". Effect attribution and response
to changing interface state seems to be a persistent challenge. On
the other hand, one participant said that “Silva made me rethink
about other biased situations..." and that “the results contradicted
[their] intuition". Another participant formed over 10 groups and
reported frequently asking what-if questions in the form of “let
me see what’s gonna happen if I exclude age". In sum, it appears
that exploratory affordances may have promoted reasoning about
sources of bias and hypothesis-testing based on prior knowledge
and inferences from exploration, though direct evidence is limited
in this dataset.

3.4 Discussion
Revisiting our initial questions in this investigation, we did find
evidence that interactive exploratory affordances did promote en-
gagement, and in some cases may have led to better outcomes.
Qualitative data suggests that interactivity helped participants to
leverage their own background knowledge and then adapt it to fit
the specific situation of a dataset (which may or may not match
those intuitions). While we saw evidence of participants reasoning
using metrics, we lack data to state for certain how the metrics
influenced their decision-making. One key break-point we observed
in the experimental data was how tool performance differed, and
that the different affordances in the tools might have played a role
in determining that outcome. While we saw evidence of exploration
tools promoting testing, we did not receive the same self-report
feedback in the case of AIF, which provided more direct answers.
On the other hand, the Silva users made use of the interactive affor-
dances for a prolonged period of time before they achieved those
higher outcomes.

While this investigation helped to inform our perspective on
two different approaches for helping users de-bias their data, it
doesn’t provide insight into the mechanisms at play in this task.
Why precisely do participants use the causal view so much? How

does use of that tool translate into improved performance (assum-
ing it does at all)? Do participants’ mental models of bias issues
match the ground truth, or are they just optimizing specific metrics
because they are shown as bars that can always be pushed higher?
Additional study is needed in order to understand these issues.

In order to find more direct evidence to understand how core
design elements shape users’ sensemaking process, we conducted a
series of think-aloud experiments among AIF 360 [8], Google What-
If [34], and a version of Silva [76] identical to that used during the
generation of the data analysed in this section.

4 THINK ALOUD STUDY
For this reason, we conducted a study across three tools employing
a think-aloud protocol. In a think-aloud study participants are
encouraged to vocalize their thoughts as they complete a task. This
stream of consciousness gives some insight into participants’ inner
cognitive processes. If the task is especially intensive, as de-biasing
is, then it is more likely that the participant will not have spare
attentional resources to control how they vocalize (for example,
due to self-censorship). This means the data will be even more
informative as to their inner state.

We conducted the study using three different tools. We make
use of a web-accessible version of the Silva tool as it was when [76]
was written, as well as IBM AIF[9] and Google What-if tool [34].
In thinking about the ways that tools might influence behavior,
as informed by our preliminary investigation, we considered how
automation and recommendation might serve to short-circuit the
exploration process. While this has a beneficial effect of improving
efficiency, it might come at the cost of reduced understanding of
the entire dataset due to lack of exploration. Further, it may be
at higher risk of suffering from unexpected flaws in algorithmic
recommendation/optimization systems.We use the Silva tool as one
pole in this spectrum, as it forces users to explore manually. At the
other end of the spectrum, AIF mainly provides recommendations
through an automated user experience. We have introduced Google
What-if as a moderate, semi-automated tool.

Having obtained approval from a university institutional review
board, participants in the study used two of the three tools to com-
plete two different de-biasing tasks (counter-balanced for order
effects across participants). Within each task we prompted users to
vocalize their thoughts, taking video footage which we later con-
verted into scripts. We also gathered event log data and conducted
a pre- and post-survey. Following completion of a session, for a sub-
set of participants we also conducted a semi-structured interview
to learn more about their process retrospectively. In this section
we will outline the general experimental procedure, describe our
resulting sessions, and discuss how we processed the qualitative
think-aloud data. In Section 5 we examine themes that emerged.

4.1 Methodology
4.1.1 De-biasing Tools. In section 2 we took a deeper look into
the spectrum of available de-biasing tools. For the purposes of
this paper, we consider the aforementioned three tools that spread
across a continuum from fully automated (AIF)Bellamy et al. [9]
to semi-automated (What-if)Google [34] to manual exploration
(Silva)Yan et al. [76]. Our intention in this investigation is not to
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be exhaustive. Rather, we aim to find salient differences across
this spectrum of de-biasing interface design affordances. While
recommendation-based tools are relatively common, there has been
growing interest in interactive tools [17, 76]. We hope to build on
this thread by identifying mechanisms that justify exploration’s
increased effort.

AI Fairness 360 (AIF) is an interactive web tool that steps users
through the process of checking and remediating bias. Since we
focused only on bias detection, we directed users to the “Check bias
metrics" step of the tool and left out the “Mitigate" and “Compare"
steps. Google What-If (What-if) is an interactive tool for under-
standing the behavior of a black-box classification or regression
ML model, with built-in support for fairness evaluation. It allows
its users to examine, evaluate, and compare machine learning mod-
els in a variety of ways, including editing datapoints, comparing
counterfactuals, experimenting using confusion matrices and ROC
curves, and testing algorithmic fairness constraints. Similar to AIF,
we limit participants to the performance and fairness detection
modules in What-if. Finally, Silva is an interactive tool for explor-
ing potential sources of unfairness in datasets or machine learning
models. Silva uses interactive elements to direct user attention to
relationships between attributes through a global causal view, pro-
vides interactive recommendations, presents intermediate fairness
results, and visualizes metrics. Screenshots of the interfaces for
each de-biasing tool can be found in the Appendix.

4.1.2 Datasets. Our study employed three public datasets: Adult
Census Income (Adult)2Zemel et al. [79], Berkeley Admission 1973
(Berkeley) Bickel et al. [11], and COMPAS Recidivism Risk Score
(COMPASS)Larson et al. [47]3. These three datasets have been
widely studied by AI fairness researchers, resulting in established
ground truth data on attribute sensitivity and bias. Each of these
datasets contains features that will be familiar to many participants.
They offer opportunities for them to leverage their own life experi-
ences and domain expertise. At the same time, they span a breadth
of complexities. As we observed in the preliminary experiment,
dataset complexity seems to play a role even when participant skill
does not result in performance differences.

4.1.3 Participants. We recruited 13 university undergraduate stu-
dents to participate in this study via a university participant pool.
Of them, 12 successfully finished the task. 5 identified as female,
7 as male, and 0 as non-binary. We included a pre-screen to filter
out participants who already had deep exposure to bias concepts
and the three datasets. As mentioned previously, participants com-
pleted two dataset tasks using two different tools. We randomly
assigned conditions across the 12 participants so that each tool and
dataset received even exposure and order was counter-balanced.
This results in a semi-within-subjects design. Specific participants
allocation details can be found in the Appendix.

4.1.4 Protocol. Due to social distancing constraints as a result
of the COVID-19 pandemic, all studies were conducted virtually
through an online meeting tool. Though we were initially leery
of conducting remote usability studies, in the past asynchronous
[5] and synchronous [54] usability studies have proved effective,

2https://archive.ics.uci.edu/ml/datasets/adult
3https://github.com/propublica/compas-analysis/

Figure 1: Sample of an activity log coded by a researcher

albeit more resource intensive. We deployed all de-biasing tools
online using a Bokeh server applet running on the Heroku cloud
platform. While not incredibly high in specification, the server
proved powerful enough to be responsive to users. Within each user
study we conducted two sessions. In each session the participant
first watched a tutorial video introducing the tool (of comparable
length for each system), completed a pre-survey with demographic
and background questions, and then prepared their assigned tool.
They were then given a task and asked to complete it. Afterwards,
participants completed a per-task final survey to reflect on their
findings. Finally, participants completed a post-survey. Participants
were offered the opportunity to volunteer to participate in a semi-
structured interview about their experiences during the study.

Within each de-biasing task participants read a short description
of the dataset and associated models. On their pre-task survey,
participants reported the attributes they thought might lead to
unfairness (replicating the pre/post attribute data referenced in
our preliminary post hoc analysis of the [76] dataset). Participants
were then instructed to use the tool to find sources of bias inside
of the model or dataset. As participants used the tool, we probed
using a think-aloud methodology. In the process of completing
the task, participants were exposed to data variables and reasoned
about bias. Through a post-task survey, we asked them to report
what sensitive attributes they observed and to reflect on how their
thinking changed.

After participants finished using both tools, they compared their
experience with the two tools across different stages of their explo-
ration (searching for information, searching for evidence, gener-
ating hypotheses, reevaluation, etc.) in a post-survey. Participants
were encouraged to include detailed examples of how an element
of a tool contributed (or did not) to their overall understanding of
the data. Finally, we asked about their tool preference.

As participants used a tool to complete a task, the interviewers
prompted them to vocalize their current thoughts and activities,
following a think-aloud protocol [41]. For example, one participant
might explain why they were creating a group, calling out what
new insight they were hoping to discover. When the participant
was not vocalizing, the experimenter reminded them to speak. The
interviewers also encourage participants specifically to voice what
attributes they were investigating and their goals. Experimenters
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reminded users to verbalize thoughts if they remained quiet for over
15 seconds. Though interviewers frequently encouraged partici-
pants to speak, they were not permitted to give hints or suggestions
at any point in the exploration process. As the task placed high
demands on participants, experimenters often reminded them to
verbalize thoughts. As performance in the task did not ultimately
differ from success rates found in other similar studies, we do not
believe the think-aloud process had a significant deleterious effect
on performance. Despite the remote nature of the study, partici-
pants readily reported thoughts and no transcription or lag issues
occurred.

Participant sessions were screen-captured and stored in a secured
computer hard drive. As participants were required to share their
screen at the start of the study, these videos contained audio and
video streams of both the participant and their current window.
Following completion of all sessions, experimenters transcribed
the video dialog into anonymized transcripts. Timestamps in the
transcript4 were paired with views of their computer screen for
analysis.

4.2 Analysis
Once the scripts were generated, two members of the research
team went through each video independently. In the first pass of
analysis, researchers tagged the video with timestamped codes for
the specific analysis actions each participant took (e.g. forming
a group, checking metric results, reading recommendations). For
any activities where the two researchers did not agree, they negoti-
ated until they arrived at one tag. In the second pass, researchers
re-examined the videos and tagged activities. At this level of investi-
gation, they examined the sensemaking activities of the participant
using a schema derived from the notional model [55]. This pro-
cess was akin to the multiple layers of process analysis commonly
performed in contextual design in human-computer interaction
[73].

The second phase analysis tracked several different elements
in a participant session. First, the researchers listened for signals
that the participant had formulated a hypothesis (or shifted back
to a prior one). As participants were primed to mention their goals
and strategies, signals for these shifts were present in the logs.
Researchers then identified intermediate steps where participants
were following up on hypotheses (either gathering evidence, testing,
or drawing conclusions). Finally, researchers tagged the end of the
session.

In a final pass, the researchers went through the activities and
tagged higher level events and sketched a state model for each
participant session. Participants all began at a starting node. As they
used system features, they created new nodes for those activities.
Groups of activities that were directed towards a specific hypothesis
were grouped together in boxed regions. Transitions between nodes
were directional, and looping behaviors as a result of iteration were
reflected as cycles in the model. Model layouts were then revised
with to emphasize the serial or parallel development of hypotheses
during the session by organizing elements based on timestamps.

4Three video transcripts representative of distinct analysis patterns can be found at
the following repository: https://github.com/CornellUDS/MLFairnessSense

Once the sketches were generated, the two researchers recon-
vened. Examining their participant process models, they developed
a refined model together that reflected both of their sketches. Hav-
ing build these models, they then extrapolated, pulling several mod-
els that were representative of patterns they observed for specific
tools and datasets. Using this group of activity patterns, the re-
searchers began identifying higher level themes that came through
across participants. They referred back to the tagged activity logs
and transcripts for further evidence of their themes, bringing in
quotes, quantitative findings from analysis of the surveys/logs, and
segments of activity. Refer to Figure 1 for one example of a log and
Figure 2 for a finished summary process model.

5 FINDINGS
Several patterns emerged as we examined the process diagrams
and data from our comparison of AIF, Silva, and What-if. In the
following subsections, we identify key themes from our data.

5.1 Exploratory Tools Invite Iteration
In Section 3, we identified how, despite having more interface ac-
tions and interactive components, an exploratory tool such as Silva
still resulted in better outcomes compared to ground truth. We hy-
pothesized that one reason for the higher level of performance was
that the exploratory tool promoted iteration. While time consum-
ing, perhaps this cycle of iterative improvement ultimately reached
a higher optimum than the recommender system did. In examining
the behavior of users during their think-alouds, we found evidence
of iterative behaviors across the tools. However, the structure of
the iteration was greatly shaped by the tool itself.

Figure 2 shows prototypical process models created as a result of
our think-aloud studies. These figures aggregate common patterns
shared across participants. Note the amount of cycles in the Silva
model on the left. This is an indication that participants engaged
in a variety of exploration behaviors. Rather than being routed
towards one conclusion by a system, participants explored several
lines of inquiry. While the size of the model is a good indicator
also of the amount of effort the user had to put forth, the behaviors
connect well with parts of theoretical models of sensemaking (e.g.
[55]). Early in the process participants engage in foraging, rapidly
developing simple hypotheses and testing them (H1-3). As time
goes on their understanding of the data becomes more sophisti-
cated. Towards the end of the exploration, the participants tended to
branch out (H5-8) from a central view as they investigated ancillary
lines of inquiry. This reflects the "explore vs. exploit" trade-off high-
lighted in sensemaking literature. While initially the user explores,
as their understanding develops they switch to exploitation.

Contrasting this with the other two tools on the right of Figure 2,
we find that they have a far more linear structure. We argue that this
is a result of the automated affordances shaping the process. In the
most extreme case, AIF pushes the participants towards a very lin-
ear workflow (upper left). The middle case, What-if, demonstrated
some parallel hypotheses, but ultimately the flow was largely lin-
ear. While participants explored a number of hypotheses, we did
not observe the same iterative development process - instead the
participants were guided to different features by the system.
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Figure 2: Example sensemaking patterns: (a) Sensemaking loops for Silva (left) tend to be hierarchical with iterative structures
and overlapping hypotheses. (b) Sensemaking loops for AIF (top right) are linear, implying sequential information processing.
(c) Typical sensemaking loops for Google What-If (bottom right) contain parallel branches: participants explore a certain
hypothesis and then move on to the next, with little connection in between.

Examining the data quantitatively, we note a significant differ-
ence (t(14)=2.4532, ρ < 0.0279) between the average hypothesis
that per participant made while using Silva (M: 5.4, Std: 4.92), AIF
(M: 2, Std: 0) and Google What-if (M: 3.9, Std: 2.81). This is further
evidence that exploratory tools promote hypothesis generation
over iterations. In Silva, we found that one hypothesis almost al-
ways began from an open-ended visual element such as the causal
graph and ended with results checking using metric views. This
transition from identifying candidates to verifying metric changes
lines up with previous observations about participants’ iterative
behavior. In examining event logs, we also note that many of the
hypotheses towards the end of the exploration return to the same
root attributes, providing more evidence for "exploit" behaviors.

From the perspective of the effectiveness of each system, par-
ticipants using Silva (M: 0.54; Std: 0.28) had a significantly lower
false discovery rate (the percentage of attributes labeled correctly
as biased or non-biased by a participant) compared to those us-
ing AIF (M: 0.75; Std: 0.15) and Google What-if (M:0.89; Std: 0.32)
(t(14)=2.2902, p = 0.032). In particular, one participant generated
14 hypotheses when using Silva to analyze the Adult dataset and
reached a nuanced final conclusion that was well matched to the
ground truth (the set of true socially biased attributes). The partic-
ipant found their end results surprising, as it did not reflect their
initial assumptions about the dataset. This is consistent with the
prior work [76] that open exploration tools can improve perfor-
mance.

5.2 Recommendations Require Less
Investment

Although open-exploration tools seemed to lead to better perfor-
mance on the tasks, users’ experiences with open-exploration tools
were mixed in our think-aloud study. 3 out of 8 participants in-
dicated that the exploratory tools were confusing and preferred
the alternative recommendation tool they used to complete the
other task. In other words, while exploration might lead to better
outcomes, the cost of extra effort outweighs potential perceived
benefits for users. We hypothesize that this is as much as case

of exploration tools’ effortfulness being a perceived disadvantage
as it is a case of participants’ not being able to accurately judge
the potential benefits of a specific tool. This is a common issue
in human-computer interaction, where system developers’ under-
standing of the benefits and costs of a system does not align with
the real-world perceptions of the tool.

Though Silva participants favored the causal graph and found it
useful (6 out of 8 participants rated causal graph highly in the post-
survey), those same participants reported a preference for AIF or
Google What-if based on which one they used in their session. Yet,
at the same time only 3 out of 12 participants were satisfied with
the automatic recommendation results provided by AIF or Google
What-if. Examining qualitative responses, participants were gener-
ally unsatisfied with the recommendations they received, though
it is unclear if other confounding factors such as expertise may be
at play. Even though participants were not entirely satisfied with
individual components of AIF or Google What-If, they seemed to
find the tools valuable as a whole. Indeed, one participant went as
far as to say that "I like that [AIF] wasn’t trial-and-error; it just told
me the results and gave an interpretable outcome". The survey data
hint at a general pattern where straightforward demonstration was
more favorable than "trial and error" free exploration, especially
for those who weren’t familiar with ML fairness or the datasets in
question.

On a high level, this brings into focus the issue of satisficing [64].
In literature on sensemaking, satisficing is commonly invoked to
highlight a central trade-off between effort and achieving "good
enough" results. While in an ideal world an analyst would find the
absolute optimum, in practice they satisfice for the best outcome
given real-world constraints. We see some evidence of this in our
think-aloud data. While participants benefited from the exploratory
tool, the amount of effort it required went past the threshold for
reasonable effort by the participants. The cost structure for recom-
mendations was perceived as much more favorable, leading to the
observed preference differences. As we move towards developing
further tools in this domain, it merits consideration how best to
convey the potential costs and benefits of a tool to future users so
that they can make more informed judgments.
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This issue is heightened when we consider skill and background
knowledge. We hypothesized that inexperienced participants might
have a harder time using open exploration tools, especially with
regards to using complex tools such as the causal graph in Silva.
We observed that participants using Silva spent on average 26% of
their time on the causal graph. Still, 2 participants misunderstood
the relationships represented by the causal graph. They did poorly
on the survey questions and expressed frustration. Overall, par-
ticipants who interpreted the causal graph correctly were able to
reason about the dataset, provide more accurate answers, and also
rated Silva higher than those who didn’t. Though we do not have
data for or against skill issues in the recommendation systems in
our study, it is reasonable to suggest that interpreting recommen-
dations accurately so as to minimize the risk of misinterpretation
also requires a degree of expertise. In both cases, this indicates
that adequate training to eliminate misunderstandings is also key
to maximizing the benefit of ML de-biasing tools. This, however,
requires a fair amount of initial investment on the part of the user
in training and studying, which is also a factor in their perceived
risk/reward considerations.

5.3 Information Overload When Balancing
Exploration and Recommendation

While the open explorations tools led to better results, they were
less favored by participants. On the other hand, participants favored
recommendations but they proved less effective in bias detection
tasks. In our preliminary investigation we observed initial signs
of this dichotomy, and so we included Google What-if, a rough
combination of the recommendation and exploration, in our think-
aloud study. However, What-if ultimately failed to read a happy
medium between the two poles.

Through event logs and post-study surveys, we observed that
participants who used What-if spent an average of 34 seconds to
analyze a pair of attributes (interpreting the plot and the distribution
of datapoints, etc.). On average, they spent 8 minutes selecting
features that might be helpful, but only explored 8.2 out of 14
attributes in the Adult dataset, and 3.9 out of 6 attributes in the
Compas dataset. That is, participants covered only a small portion
of all attributes while spending quite a bit of time in parts of the
tool that exposed attributes. Such inefficiencies may have help
participants back from gaining valuable insights. We observed that
participants often found themselves overwhelmed by the huge
number of potential next steps in the tool at any given moment. For
instance, one participant reported, “I don’t think I can study all the
attributes so I will start with the ones I thought was [sic] biased".
However, they weren’t able to follow their plan as they spent the
rest of the session only looking for relationships between age and
other attributes. Besides exploring just a couple of features, some
participants were on the other end of the extreme, trying exploit
as many features as they could without adequate contemplation of
what they were observing. For example, among the 4 participants
who used What-If to analyze Adult dataset, 2 looked at over 10
attributes and the others examined no more than 4. This implies
that there might be a two-sided issue at play here: while exploration
tools can lead to choice overload, ready access to recommendations
may actually exacerbate the overload by supplying more avenues
for interaction and hooks for exploration.

The interface of Google What-if segmented bias detection into
three separate stages where participants first edited data points,
then moved to change the parameters of models, and finally de-
tected unfairness. This interface design cut off the connection be-
tween each step and significantly enlarged the search space of users.
Part of the low input-output ratio withWhat-If may be due to an ex-
plosion of pairwise slicing and plotting combinations (e.g. a search
space of size 215 = 32768 for the Adult dataset). By contrast, the
input-output ratio is higher for Silva, a free-exploration system. On
average, participants using Silva formed 5.4 groups for the Adult
dataset, covering 12.0 attributes out of 14 attributes (85.7%), and 2.0
groups for the Berkeley dataset, covering all the attributes in that
dataset.

In addition, participants had to switch between different tabs in
the hybrid system. A typical Silva session was iterative, leading to a
hierarchical sensemaking loop. By contrast, when exploration was
parallelized, as we observed in What-If (see Figure 2), sensemaking
is forced into parallel branches that don’t lend themselves to itera-
tive improvement. Our think-aloud studies provide evidence that
hierarchical patterns of exploration could potentially reduce infor-
mation overload in complex de-biasing tasks, albeit with potentially
an issue in bootstrapping at the very start of a task.

6 DISCUSSION AND RECOMMENDATIONS
Account for expertise in exploration and recommendation:
We noticed a conflict between user preferences and system effec-
tiveness, finding that participants who didn’t fully understand the
causal graph in Silva reported that the tool was not useful. Explo-
ration requires practitioners to have a fair amount of basic knowl-
edge, otherwise the barrier to entry is to great. Yet, initial training
investments may pay dividends. On the other hand, recommenda-
tions, while superficially easier to read, may be subject to misin-
terpretation or bias if training is lacking. In both of these cases,
expertise is a critical design criterion. While the consequences man-
ifest differently in both cases (direct dislike in exploration, subtle
biases in recommendations), the impact is potentially great. For
this reason, it is crucial that designers of de-biasing systems ade-
quately test and account for the skill level of their users and choose
affordances that best reflect that balance.

Think-aloud as a method for evaluating de-biasing systems:
While the preliminary analysis showed that a great deal of per-
formance information could be derived from traditional satisfiable
user studies, our think-aloud demonstrated the kinds of nuances
that qualitative investigation can expose in terms of usability and
effectiveness of interactive systems. While this is certainly not an
unknown in human-computer interaction, we emphasize that un-
derstanding the mental model and process of participants using a
de-biasing tool is critical, lest biases go missed or re-incorporated
into the pipeline.

Motivating efficient exploration through hybridization: We
noticed that combining exploration and recommendation risks
blowing up the number of options in a tool, leading to choice over-
load among users. A simple combination of both approaches when
dealing with complex, multidimensional datasets may not be suffi-
cient. However, there is a possible resolution: connecting individual
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interface components closely, reducing the costs of switching be-
tween subtasks during iteration, and strategically incorporating
recommendation when bootstrapping or exploitation are involved.

Balancing tuning and broader contexts: While the Silva tool
abstracted away the details of model parameter tuning, essentially
making the classifier a black box to users, Google What-If exposed
the technical details of the model including editable classification
thresholds, applicable optimization/regularization strategies, and
a datapoint editor. While this design gets users more involved in
model development, especially for parameter tuning , it directs
users’ attention away reasoning about bias. Given the concrete
way in which parameters can be tuned and optimized, this may be
a tantalizing distraction versus de-biasing which is, as our think-
alouds showed, a complex and inter-dependent task which requires
effort. There is certainly a place in ML fairness systems for the
nuts and bolts of ML development, but we emphasize that these
affordances risk acting as a distraction from the harder sensemaking
tasks which expose biases (both implicit and explicit) and help
users develop knowledge about how their data work that might
be transferred to future tasks. In the future we hope to investigate
how to structure ML fairness tools so that they can strike the right
balance of surfacing model mechanics while promoting higher level
reasoning about fairness.

6.1 Limitations
Our study is subject to a number of limitations. Foremost, our con-
clusions might have been influenced by the limited sample size
and randomized assignment. Participant-level noise may have con-
founded differences we observed. Additionally, the extent to which
participants’ skill level affected their preference and performance
remains unclear. In our preliminary log analysis, we noted that skill
level was not a factor when comparing participants’ understand-
ing of the bias in the datasets. However, we did note that more
skilled participants were more likely to interpret causal relation-
ships correctly and react to interactive graphs more quickly. The
current sensemaking patterns we characterized will be informed
by future studies that capture a wider variety of skill levels with
greater number of participants. In terms of methodology, our think-
alouds were necessarily limited by the remote study structure and
our selection of qualitative analysis techniques. It is likely that
different strategies for processing the variety of data coming out
of the think-alouds might emphasize different features in the data
(for example, exposing subtle effects of skill versus our focus on
process-level details). This is something we endeavor to explore as
we work with more participants and develop interactive de-biasing
tools. Additionally, though we did not observe significant deleteri-
ous effects as a result of the think-aloud protocol, it is possible that
limits in participant attentional resources still had an influence on
the behavior we observed during an intensive task.

7 CONCLUSION
This paper aimed to investigate how the design of de-biasing sys-
tems affects how ML practitioners reason about biases. Through a
preliminary study, we identified how exploratory and recommen-
dation tools might evoke different responses. Through the online
think-aloud study, multiple surveys and semi-structured interviews,

we synthesized process-level details about three different de-biasing
tools, identifying key distinguishing features among their interface
affordances and connecting them to differences in participant sense-
making.We find that exploratory tools tend to invite iteration, while
recommendation tools requires less investment. Tools that attempt
to balance both exploration and recommendation risk overload-
ing users. Finally, we provided design recommendations for future
interactive de-biasing systems.
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APPENDIX
Additional User Activity Log Analysis
In the preliminary log analysis, we captured user activities in each
session. In addition to time spent on the causal graph and the
total number of groups formed, we also looked at various metrics
like inter-group operations and the structure of each group. These
statistics are summarized in Table 2.

Mean Std Mean Std
Metric (Berkeley) (Berkeley) (Adult) (Adult)

# of operations
on the causal graph

11.00 5.69 34.45 35.23

# of groups formed 2.00 0.71 5.40 4.92
# of operations
between groups

5.13 1.51 6.32 3.03

# of sensitive
attributes in groups

1.00 0.00 1.58 0.88

# of non-sensitive
attributes in groups

1.50 2.40 7.34 4.80

total # of operations 13.00 6.20 39.85 39.89
duration (s) 566.17 942.92 536.95 582.95

Table 1: User event log statistics

Figure 3: Example Interfaces of Silva, AIF andWhat-if(From
the top to the bottom)

De-biasing tool interfaces
Figure 3 depicts the interfaces of the three systems that have been
evaluated in this paper. The top one is Silva, with four major com-
ponents: a Dataset Panel (A), a Causal Graph view (B), a Table
Group (C), and a Fairness Dashboard (D). The middle one is AIF,
which has two major components: a Results Explanation(A) and
a Visualization Dashboard(B). The bottom one is Google What-if,
which has two major components: a Fairness Configuration (A) and
a Model Parameter Tuning (B).
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